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ABSTRACTABSTRACTABSTRACTABSTRACT

Burgers’ equation is a fundamental partial 

differential equation from fluid 

mechanics. It occurs in various areas of 

applied mathematics, such as modeling 

of fluid dynamics and traffic flow. It 

relates to the Navier-Stokes equation for 

incompressible flow with the pressure 

term removed. Due to the complexity of 

the Analytic solution, one needs to solve 

the equation by using numerical 

methods.
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In this research we  develope the pure 

Crank-Nicholson (CN) Scheme and Crank-

Nicholson-Du Fort & Frankel (CN-DF) 

method by Operator Splitting. Crank-

Nicholson-Du-Fort and Frankel is an hybrid 

scheme made by combining the Crank-

Nicholson and  Du-Fort and Frankel 

schemes  which are both  unconditionally 

stable but the Du-fort scheme is explicit 

while the Crank-Nicholson scheme is 

implicit. 
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The developed schemes are solved 

numerically using initially solved solution 

via Hopf-Cole transformation and 

separation of variables to generate the 

initial and boundary conditions. Analysis 

of the resulting schemes was found to 

be unconditionally stable. The results of 

the hybrid scheme are found to compare 

well with those of the pure Crank-

Nicholson. 
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One of the important Mathematical models of basic 

flow equation describing unsteady transport 

problem consisting of a class of time dependent 

partial differential equations is the two dimensional 

Burger’s equation (Burgers, 1948). The two 

dimensional Burger’s equation occur in physical 

problems like turbulence, flow through a shock wave 

traveling in a viscous fluid, sedimentation of 

particles in fluid suspensions under effect of gravity 

Coupled non-linear Burgers’ equations in two 

dimension is a special form of incompressible 

Navier-Stokes equations without the pressure term 

and the continuity equation (Vineet , Mohammad , 

Utkarsh , & Sanyasira, 2011)
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The Burgers’ equation was first introduced by Bateman (Bateman, 

1915), who derived the steady state solution for the one-

dimensional equation and was studied in details by Burgers 

(Burgers, 1948). Analytic solution of the Burgers’ equation involves 

series solutions which converge very slowly for small values of 

viscosity constant according to Idris (Idris & Ali, 2007). Certain 

types of boundary value problems can be solved by replacing the 

differential equation by the corresponding finite difference 

equation and then solving the latter by a process of iteration. 

These methods have been used by many mathematicians 

according to Jain (Jain, 2004). Linearized parabolic equations 

appear as models in heat flow and gas dynamics. Finite difference 

solutions of these equations are found by using ordinary 

discretization, see (Ames, 1994) and (Grffiths & Mitchel , 1980).
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. In the past several years, numerical solutions to one-

dimensional Burgers’ equations have attracted a lot of 

attention of the researchers (V. K. Srivastava, M. Tamsir, 

U. Bhardwaj, & Y. Sanyasiraju, 2011). Many researchers 

use the coupled two dimensional Burgers’ equation and 

is mentioned in (Ali, 2009) (M. Basto, V. Semiao, & F. 

Calheiros, 2009), (Beauchamp & Arminjon, 1979), (M. M. 

Rashidi & E. Erfani, 2009), (V. K. Srivastava, M. Tamsir, U. 

Bhardwaj, & Y. Sanyasiraju, 2011), (B. Zheng, 2010) 

amongst others.
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Alternating  Direction Implicit Formulation of the 

Differential Quadrature Method (ADI-DQM) has 

been used in the past to solve the Burgers 

equation in two-dimension. The numerical results 

showed that the ADI-DQM has the higher accuracy 

and convergence as well as the less computation 

workload by using few grid points (A.S.J. Al-Saif & 

Mohammed J., 2012)
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Operator splitting is a powerful method for numerical 

investigation of complex models. It involves splitting 

complex problem into a sequence of simpler tasks, that 

can be called split sub-problems (Yesim, 2010). Espen in 

his thesis (Espen, 2011) discussed numerical 

quadratures in one and two dimensions, which was 

followed by a discussion regarding the differentiation of 

general operators in Banach spaces. 
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In the research (Espen, 2011) investigated the Godunov 

and Strang method numerically for the viscous 

Burgers’ equation and the KdV equation and 

presented different numerical methods for the sub-

equations from the splitting. They discovered that the 

Operator splitting methods work well numerically for 

the two equations. Also in his thesis, Yesim (Yesim, 

2010) studied consistency and stability of the operator 

splitting methods. He concentrated on how to improve 

the classical operator splitting methods via 

Zassenhaus product formula.
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Hybrid Schemes with Crank-Nicholson was first introduced 

by 2009 to solve the 1-D heat equation using operator 

splitting by modifying it. (Koross, Chepkwony, Oduor, & 

Omolo, 2009). In their paper they developed hybrid 

finite difference method resulting from operator splitting 

for solving the modified form and proved that there is 

an improvement in efficacy of the Crank-Nicholson 

scheme when the Lax-Friedrich’s and Du Fort and 

Frankel discretizations are used on it. They concluded in 

their research findings that the Crank-Nicholson-Lax-

Friedrich-Du For and Frankel is the most accurate 

method for solving 1-D heat equation.
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Crank-Nicholson Method
Crank–Nicholson method is a finite difference 

method used for numerically solving the heat 

equation and similar partial differential 

equations. It is a second-order method in time, 

implicit in time, and is numerically stable. The 

method was developed by John Crank and 

Phyllis Nicholson in the mid-20th century. 

INTRODUCTION INTRODUCTION INTRODUCTION INTRODUCTION 
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We develop a pure Crank-Nicholson 

(CN) scheme and hybrid scheme of 

Crank-Nicholson and Du Fort & 

Frankel (CN-DF) from operator 

splitting to solve 2-D Burgers 

equations.

OBJECTIVE



The methodology involved investigation 
to the solutions of the pure Crank-

Nicholson and hybrid method 
resulting from the Crank-Nicholson 

and  Du-Fort & Frankel’ finite 
difference methods resulting from 

operator splitting. The Crank-
Nicholson method is the parent. 

Finally, the finite difference schemes 
developed were compared with those 
of the available analytic solutions and 

were be analyzed for stability.

METHODOLOGY
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PURE CRANK-NICHOLSON (CN) SCHEME
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 It is necessary that we first develop the pure Crank-Nicholson method resulting from this 

splitting. This is because other hybrid methods are derived from it. Thus the Crank-Nicholson 

method is as follows: 
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Using equations (2.1.5)-(2.1.18) in equation (2.1.4) and letting � = ℎ, we obtain a discretization 

scheme by operator splitting. 
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APPROXIMATION AT THE BOUNDARY

We use work developed by Kweyu (Kweyu , 
Manyonge, Koross A. , & Ssema, 2012) for 
the initial and boundary conditions. The 
solution are given as:     
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CRANK-NICHOLSON-DU FORT-FRANKEL 

(CN-DF) SCHEME



RESULTS OF THE NUMERICAL SCHEMES DEVELOPEDRESULTS OF THE NUMERICAL SCHEMES DEVELOPEDRESULTS OF THE NUMERICAL SCHEMES DEVELOPEDRESULTS OF THE NUMERICAL SCHEMES DEVELOPED

x Exact Solution u (*e-006) Pure CN u (*e-006) Hybrid CN-DF u (*e-006)

0.1 -0.361650734301019 -0.361787155384327 -0.361653771182265

0.2 -0.725321995372639 -0.725588362525353 -0.725327925052115

0.3 -1.090398562803820 -1.090790321153970 -1.090407283922360

0.4 -1.455935883797210 -1.456451500936150 -1.455947362252530

0.5 -1.820803748461820 -1.821445349043890 -1.820818031533110

0.6 -2.183867594804460 -2.184640978240830 -2.183884811546400

0.7 -2.544179042412540 -2.545093045825040 -2.544199389476210

0.8 -2.901144228647610 -2.902209524822090 -2.901167943526820

0.9 -3.254642313537360 -3.255869840866490 -3.254669639626780

1 -3.605076050695350 -3.606475329816040 -3.605107199831220
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x Exact Solution v (*e-006) Pure CN v (*e-006) Hybrid CN-DF v (*e-006)

0.1 -3.972769188311190 -3.972865925156520 -3.972771341778260

0.2 -3.944170064848750 -3.944368960551150 -3.944174492525940

0.3 -3.913141335562600 -3.913451475311220 -3.913148239730720

0.4 -3.878873375785220 -3.879306517566780 -3.878883018208280

0.5 -3.840895689849290 -3.841464954144770 -3.840908362597330

0.6 -3.799126642198930 -3.799845044283970 -3.799142634968780

0.7 -3.753877164071580 -3.754756190904300 -3.753896732505020

0.8 -3.705807681840330 -3.706856112188090 -3.705831021264290

0.9 -3.655845501933210 -3.657068620610160 -3.655872729881250

1 -3.605076050695350 -3.606475329816040 -3.605107199831220



Table 3: Absolute errors in Numerical Solution of u for Coupled Burgers’ 

Equation at t=1.0t=1.0t=1.0t=1.0,  y=1.0y=1.0y=1.0y=1.0 and Re=5000

RESULTS RESULTS RESULTS RESULTS CONTCONTCONTCONT…………

x Pure CN u (*e-006) Hybrid CN-DF-LF u (*e-006)

0.1 0.000136421083307969 0.000001518470782

0.2 0.000266367152713998 0.000002964898953

0.3 0.000391758350150040 0.000004360646750

0.4 0.000515617138939994 0.000005739343120

0.5 0.000641600582069968 0.000007141679460

0.6 0.000773383436369901 0.000008608544150

0.7 0.000914003412499920 0.000010173735920

0.8 0.001065296174479700 0.000011857676430

0.9 0.001227527329129790 0.000013663316080

1 0.001399279120689820 0.000015574875360
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Table 4: Absolute errors in Numerical Solution of v for 

Coupled Burgers’ equation at t=1.0t=1.0t=1.0t=1.0,  y=1.0y=1.0y=1.0y=1.0 and 

Re=5000

x Pure CN v (*e-006) Hybrid CN-DF v (*e-006)

0.1 0.000096736845329737 0.000002153467070

0.2 0.000198895702399948 0.000004427677190

0.3 0.000310139748620042 0.000006904168120

0.4 0.000433141781559954 0.000009642423060

0.5 0.000569264295480210 0.000012672748040

0.6 0.000718402085040371 0.000015992769850

0.7 0.000879026832719898 0.000019568433440

0.8 0.001048430347760030 0.000023339423960

0.9 0.001223118676950020 0.000027227948040

1 0.001399279120689820 0.000031149135870
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The above table shows that the CN-DF scheme provides accurate 

results closer to the exact solutions as compared to the CN 

scheme.
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Figure 1: Absolute error in Solution of u for the 2-D Coupled Burgers’

equation
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Figure 2: Absolute error in Solution of v for the 2-D Coupled

Burgers’ equation
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Figure 1 & 2 shows a decreased absolute error in

CN-DF compared to CN for numerical solution

of both u and v.

WeWeWeWe nownownownow presentpresentpresentpresent 3333----DDDD solutionssolutionssolutionssolutions::::
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Figure 3: CN Numerical Solution of u at t=1.000
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Figure 5: CN Numerical Solution of v at t=1.000



RESULTS RESULTS RESULTS RESULTS CONTCONTCONTCONT…………

0

5

10

15

0
2

4
6

8
10

12-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

x 10
-6

x

CN-DF Numerical Solution of v when at t=1

y

v
(x
,y
,t
)

Figure 6: CN-DF Numerical Solution of v at 

t=1.000



CONCLUSION CONCLUSION CONCLUSION CONCLUSION 

We note that the 3-D solutions from 
all the methods developed take the 
same shape. It is thus established 
that the finite difference schemes 
developed are convergent.

The hybrid CN-DF scheme is the more 
accurate than the pure CN scheme 
when compared with the exact 
solution. The decrease in the 
absolute error verifies the 
consistency of the scheme.
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