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ABSTRACT 

The positions of the anions and cations are switched in antiperovskites material, which 

are inorganic compounds with a perovskite-like structure. The family of antiperovskites 

materials includes insulators, superconductors and semiconductors which make them 

useful in a variety of technologies such as spintronics, memory devices, transformers, 

motors, generators and sensors. There has not been enough research done on how 

magnetism and superconductivity interact. Antiperovskite hexagons' superconducting 

transition temperatures have not been fully studied. To complement experiments, 

computational simulations must be developed. The analysis of the superconducting 

properties in detail, including the superconducting energy gap, electronic structure 

properties and superconducting transition temperature, was done using a state-of-the-art 

ab initio approach. The Quantum Espresso Simulation Package was used to run all the 

calculations. Density functional theory as well as plane wave basis set framework were 

used for all computations. The electronic structure properties, elastic, superconducting 

transition temperatures and thermodynamic properties of hexagonal antiperovskite 

XCCr3 (A=Zn, Ga, or Al) were all calculated using density functional theory in the 

generalized gradient approximation (GGA). The calculated lattice constants were 

5.207Å, 5.813Å and 5.721Å for AlCCr3, GaCCr3 and ZnCCr3 respectively and are in 

good agreement with the previous available theoretical work. Voigt-Reuss-Hill 

averaging was used to obtain values for the parameters that make up the elastic 

constants. From this study, AlCCr3, GaCCr3 and ZnCCr3 were all found to have 

Poisson's ratios of 0.1114, 0.1153 and 0.094 respectively. Each parameter calculated 

value was checked against previously established theoretical and experimental norms. 

The transition temperature of the three materials is investigated so that the electron-

phonon interaction may be simulated. Phonon dispersion research confirmed that all 

three compounds are dynamically stable. The mechanism for superconductivity is the 

interaction of electrons in the 4d state of Cr with low-frequency phonons. The average 

electron-phonon coupling value was calculated to be 0.60 for AlCCr3, 0.77 for GaCCr3, 

and 0.70 for ZnNCr3, yielding superconducting transition temperatures of 6.82 K, 12.01 

K and 8.21 K, respectively indicating a moderate amount of electron-phonon coupling 

strength. The findings show that compared to GaCCr3 and ZnCCr3, AlCCr3 is harder, 

stiffer, and more tightly bound, and has a Debye temperature that is much higher. 

However, at lower Debye temperatures, the bonds in GaCCr3 and ZnCCr3 are weaker and 

the materials are less stiff. 

KeyWords: Antiperovskite, Density Functional Theory, First Principle, 

Superconductivity 
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CHAPTER ONE 

INTRODUCTION 

1.1 Overview 

The background of the theories behind antiperovskite materials' superconductivity is 

addressed in this section. It then goes on to establish the significance and scope of the 

study, state the research topic, objectives and list of research questions. 

1.2 Background of the Study 

The positions of the anions and cations are switched in antiperovskite materials, which 

are inorganic compounds with a perovskite-like structure (Krivovichev, 2008). A stream 

of electron pairs flowing without resistance in specific materials at low temperatures is a 

phenomenon that is explained by the BCS theory. Due to their wide variety of band gaps, 

antiperovskite materials are extremely useful and employed in various industrial 

applications (Okoye, 2006) where waste heat is immediately transformed to electrical 

energy in thermoelectric systems. 

Giant Magneto Resistance, almost zero temperature coefficients of resistivity (Sun et al., 

2010) and magnetostriction (Takenaka & Takagi, 2005)  are just a few of the materials' 

intriguing physical properties. Due to its unique properties, antiperovskite is widely used 

to make devices like magnetic field sensors used for data retrieval, micro-electron 

mechanical systems, biosensors as well as hard drives (Asano et al., 2008). Since their 

coefficient of resistance is zero across all temperatures, they are useful in every setting. 

Excellent mechanical properties of antiperovskites make them potentially useful in 

automotive and space technologies (Tong & Sun, 2012). They are strong mechanically 

and light in weight (Tong & Sun, 2012). 
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Due to the constantly expanding population, modern civilization has an increasing need 

for energy. There is always a need for reliable electrically conducting materials. The 

necessity to address the energy crisis served as a major motivator for interest in the 

research of these antiperovskite materials. Due to their excellent thermoelectric 

properties, antiperovskites have a significant potential to address the energy problem 

(Ovsyannikov & Shchennikov, 2010). 

The electronic Schrödinger equation may be solved using first principle computation, a 

quantum mechanical technique, by knowing the locations of the system's nuclei and the 

amount of electrons. In order to examine the majority of attributes, including structural, 

electronic, mechanical and physical properties, a numerical simulation approach is 

required. 

Researchers may use band structure simulations as a powerful theoretical tool for 

predicting these properties. Theorists now have a new tool at their disposal, made 

possible by the advent of modern, high-powered computers. Modern computers can do a 

broad variety of mathematical operations, including the solution of exceedingly complex 

equations and the manipulation of theories that can be extremely tough for 

mathematician. Therefore, with the advent of contemporary, high-performance 

computers and electronic structure computations have been more useful in the physics 

and chemistry fields during recent years. When beginning with an atomic model, modern 

approaches may describe the electronic properties and ground state structure of a system 

in great detail. In the first part of the twenty-first century, quantum theory was 

formulated and developed, resulting in much interest and understanding of basic 

concepts of physics. The relevance of quantum mechanics in both the pure and practical 

sciences is generally agreed upon, and its astounding degree of accuracy and 

predictability has been shown. It is self-evident that the fundamental equations that can 
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be solved are those of quantum mechanics when one is to find a description of genuine 

processes and actual materials. In order to make any meaningful progress, numerical 

solutions to the equations are required. 

Density functional theory (DFT), a theory that correlates multi body systems used in 

computational physics or chemistry, is employed for the first principle analysis of 

electronic structure and magnetic properties of materials in their ground state under 

pressure or with temperature modification. In order to describe the quantum behavior of 

atoms and molecules, DFT is used to solve the Schrödinger equation, which takes into 

account real-world constraints. First principles calculations based on DFT were 

performed to determine the superconductivity properties, structural, electronic, and 

elastic properties of XCCr3 (A=Zn, Ga, or Al). 

1.3 Statement of the Research Problem 

The mechanisms for superconductivity of antiperovskite have not been fully understood. 

The influence of phonon dispersion on the electron-phonon coupling constant has not 

explicitly been stated. This research focused on ab initio study of the superconductivity 

properties of hexagonal antiperovskite XCCr3 (X=Zn, Ga or Al). Computational 

calculations were employed where simulation of the properties of material under study 

were carried out. 

1.4 Objectives of the Study 

1.4.1 General Objective of the Study 

This research sought to use the ab initio approach to determine the elastic, electronic 

structure, superconducting, and thermodynamic properties of XCCr3 (X=Zn, Ga, or Al). 
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1.4.2 Specific Objectives of the Study 

The objectives of this study were: 

i. To use first principles methodology to determine the electronic structure 

properties of hexagonal antiperovskite materials XCCr3 (X=Zn, Ga or Al). 

ii. To use the first principles technique to determine the elastic properties of XCCr3 

(X=Zn, Ga, or Al). 

iii. To use the first principles technique to determine the superconducting properties 

of the hexagonal antiperovskite materials XCCr3 (X=Zn, Ga, or Al). 

iv. To use density functional theory technique to determine the thermodynamic 

properties of the materials XCCr3 (X=Zn, Ga, or Al). 

1.5 Research Questions 

The research intends to answer the following questions:  

i. Based on fundamental principles, what are the electronic structure properties of 

hexagonal antiperovskite materials XCCr3 (X=Zn, Ga, or Al) and how do they 

compare to previous works? 

ii. According to the first principles technique, what are the elastic properties of 

XCCr3 (X=Zn, Ga, or Al)? 

iii. According to the first principles technique, what are the superconducting 

properties of hexagonal antiperovskite materials XCCr3 (X=Zn, Ga, or Al)? 

iv. Using a density functional theory method, what are the thermodynamic properties 

of the materials XCCr3 (X=Zn, Ga, or Al)? 

1.6 Justification of the Study 

Density functional theory is used to measure and calculate the fundamental properties of 

certain materials such as their crystal structure, electronic structure, and 

superconductivity properties. Electron density can be easily understood and measured 
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(Göpel et al., 1984). The quantum mechanical properties of materials at their ground 

state have been successfully determined using DFT. Based on the study; antiperovskites 

based on chromium are moderate coupling superconductors. Furthermore, it is 

anticipated that the study's findings would advance knowledge of chromium-based 

antiperovskite materials. 

1.7 Significance of the Study 

Over the years, computational simulations have been employed in the research of 

materials' properties, including the investigation of their mechanical and electronic 

properties. Predicting the superconducting properties of XCCr3 (X=Zn, Ga, or Al) 

antiperovskite materials was the aim of this research.  

1.8 Scope of the Study 

First principle-based computational methods were used to collect the elastic, electronic, 

superconducting, and thermodynamic data of the chromium-based Antiperovskite 

material. No experimental measurements were performed. 

1.9 Assumptions 

The assumptions made were: 

i. The required properties could be determined using DFT tools. 

ii. Studies on antiperovskite, a chromium-based compound with a hexagonal crystal 

structure, and other related topics would be easily accessible.  

iii. The amount of time needed to complete the study would be sufficient to provide 

the intended outcomes, which would provide answers to the specific objectives. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Introduction 

Properties regarding antiperovskites materials which lead to their superconductivity are 

covered in this chapter. The conceptual framework is presented and discussed. 

2.2 Electronic Structure Properties of Hexagonal Antiperovskite Material 

The main area of complexity is the consideration of electron-electron interactions; the 

interactionof electrons with atomic nuclei and each other determines many of a system's 

physical and chemical properties. Approximation is necessary in order to readily separate 

out or address these interactions. The numerical solutions and electronic structure 

calculations of the Schrödinger equation on a specific system set themselves against 

other approaches used in modeling since they are based on basic laws (Mollah, 

2004).The computation includes the description of the system and not external 

parameters, as selected by the researcher (Gill et al., 1992). Such computations allow for 

the study of a system without the need for actual experimentation. The numerical 

solution of the Schrӧdinger problem is still challenging.  

The exact solutions to the equation can only be found when system size increases 

exponentially. Other than the lowest and most basic of systems, such as the hydrogen 

atom, this scaling makes it impossible to do precise calculations. To make the equations 

easier to solve, approximations may be used, but this comes at the cost of some accuracy 

and predictive capacity being lost. The most powerful electronic structure techniques 

today are computational chemistry and density functional theory, which has been utilized 

for analyzing broad variety in systems with practical applications (Baerends et al., 1973). 

Possible precision is constrained by assumptions made for the electron-electron 

interactions in the density functional and quantum chemical techniques (Delft, 2012). 
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First-principles analyses of the formation energies reveal that the nonmagnetic ACCr3 (A 

= Al and Ga) materials may be produced at ambient pressure. The band structures 

demonstrate the metallic character of the materials (Shao et al., 2014).  

AsNMg3 and SbNMg3 were studied utilizing the Generalized Gradient Approach, which 

revealed that they had a narrow band gap and exhibit ionic semiconducting behavior. In 

contrast to SbNMg3, AsNMg3 exhibits an indirect band gap (Wright et al., 2014). 

PbNCa3 is a metallic substance, whereas BiNCa3 is a semiconductor with a small band 

gap. Since lead contains one less electron than bismuth and BiNCa3 has a relatively 

narrow band gap, it was predicted that PbNCa3 would be a metal. BiNCa3's component 

elements' valences provide an ionic image of the compound, but substantial covalent 

mixing is also present because of the p-states of Bi and N. The Local Density 

Approximation (LDA) underestimates band gaps (Papaconstantopoulos & Pickett, 1992). 

At pressure and room temperature, AsNCa3 and PNCa3 crystallize into orthorhombic 

structures with the Pbnm group space. The band gap of AsNCa3 can decrease with 

pressure as the orthorhombic structure becomes very stable than the cubic structure. At 

59 GPa, AsNCa3 undergoes phase change to the cubic phase, with 15 atoms in a unit cell 

(Haddadi et al., 2009).  

As shown in Figure 1, in a perfect hexagonal halide antiperovskite, the B-site, which is 

the divalent metal located at the hexagonal body Centre, the anions occupy six face 

centers, creating octahedral environment for monovalent cations and divalent metal are 

at the vertices of the hexagon (Wright, 1993). 

 

 

 

 



8 
 

Figure 1 

Unit Cell of Hexagonal Antiperovskite 

 

Adapted from Wright, 1993, p. 282. 

2.3 Elastic Properties of Hexagonal Antiperovskite 

The system's physical and chemical properties are affected by the way electrons interact 

with atomic nuclei. Cores are the sites of all three types of interactions between electrons 

and nuclei. The primary source of problem in establishing these interactions is 

considering electron-electron interaction when interpreting the properties, since the two 

interactions are intertwined and can only be treated using approximation. It is possible to 

tell one system with a properly solved Schrödinger equation apart from another. Time 

must grow exponentially with system size if these equations are to be solved properly 

(Hetényi et al., 2001). This scaling renders precise calculations difficult for all but the 

smallest and most fundamental systems. In order to simplify these equations into a form 

that can be easily solved, approximations are included, which reduces the degree of 

accuracy and the predictive ability. Many solutions of the Schrödinger equations can be 

computed using computer simulation and the density functional theory (DFT) methods, 

including structural properties, electronic and other material properties that are relevant 

to a wide variety of systems (Baerends et al., 1973). 
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The electronic structure properties of cubic antiperovskites were examined by using three 

distinct computational approaches that is; Generalized Gradient Approximation (GGA), 

Local Density Approximation (LDA) as well as Engel Vosko. The resulting calculations 

revealed band-gaps of 0.59 eV for SbNCa3 as well as 0.36 eV in BiNCa3, respectively 

(Mazin et al., 2002). When determining the band structures of these compounds, Engel 

Vosko-GGA provides higher precision than either LDA or GGA. Despite the fact that 

EV-GGA created larger band gaps than the experimental findings predicted, these 

materials nonetheless behave like metals because their valance bands straddle the Fermi 

level (Moakafi et al., 2009). 

Based on the investigation conducted using the full potential augmented plane waves and 

local orbital (APW + lo) approach, it has been shown that AsNMg3 and SbNMg3 exhibit 

small band gaps when considering their structural, electronic and optical properties. 

Nevertheless, it is worth noting that the band gaps estimated by DFT often exhibit a 

tendency to underestimate their actual values (Okoye, 2006). Consequently, the 

computed locations of the optical spectrum could be lower in comparison to the values 

obtained by experimental measurements. In comparison to SbNMg3, which experiences a 

shift from an indirect to a direct band gap characteristic at a pressure of 6.85 GPa, 

AsNMg3 retains its direct band gap attribute throughout the entire range of applied 

pressure. Additionally, AsNMg3 exhibits a fundamental direct band gap that initially 

rises as much as 4 GPa, but subsequently decreases as it reaches higher pressure (Pugh, 

1954). 

In their study, (Amara et al., 2013)employed the full-potential augmented plane wave 

along with local orbital method to analyze the density of states, band structure as well as 

charge density of PNMg3, AsNMg3, SbNMg3, and BiNMg3. The investigation also 

considered the influence of exchange as well as interactions by utilizing the Tran-Blaha 
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modified Becke-Johnson (mBJ) potential (Amara et al., 2013). Based on the findings of 

this study, it may be concluded that these compounds exhibit properties of 

semiconductors. The materials SbNMg3 and BiNMg3 were identified as examples of 

indirectly band gap materials, whereas PNMg3 and AsNMg3 were identified as examples 

of the direct band gap compounds. When compared to previous studies, the band gap 

values obtained with the mBJ potential are the greatest. PNMg3 has the highest elastic 

properties, whereas BiNMg3 has the lowest. When transitioning from BiNMg3 to 

PNMg3, the covalent nature of these materials becomes more prominent (Tran et al., 

2007). 

2.4 Superconductivity Properties 

GaNCr3 and RhNCr3 materials' band structures demonstrate their metallic character 

(Wiendlocha et al., 2007). Both compounds have a non-ferromagnetic ground state 

according to spin polarized calculations. These materials' high values for the electronic 

component of the electron-phonon coupling constant may explain their potential for 

superconductivity. Below 17K, the cubic antiperovskite RhNCr3 material is metallic and 

superconducting. Its superconductivity's process is not entirely understood (Wright et al., 

2014). ZnCNi3 was shown to be superconducting at 2K. Mg is deficient from the ZnCNi3 

material hence  the absence of superconductivity (Johannes & Pickett, 2004). 

The occupied highest energy states in MNNi3 (M = Zn, Mg, or Cd) are characterized by 

hybridizations involving Nickel-3d and Nitrogen- 2p orbitals in close proximity to the 

Fermi level, with very little contribution from the M elements (Sieberer et al., 2007). 

Superconductivity in ZnNNi3 was obtained at a temperature of 3K, but none of the other 

two compounds exhibited this property. The observed phenomenon may be attributed to 

a marginal augmentation of M variables, resulting in a little displacement of the energy 

bands in close proximity to the Fermi level (Li et al., 2009). 
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MgCNi3, which is the initial reversed Perovskite superconductor to have been identified, 

has gained considerable recognition due to its unique property of exhibiting imaginary 

frequencies (Dolgov et al., 2008). Due to the perpendicular migration of 2 Nickel atoms 

towards the octahedral, the acoustic mode of the perovskite structure is unstable. In 

addition, they found that inharmonic effects stabilize this mode, which, when included 

into the whole investigation, leads to an unusually high calculated 
  = 1.5154. The 

authors used a rather large scaling factor of 
  = 0.33 in order to reconcile this outcome 

with the experimentally observed transition temperature of 8K. It is possible to find 

imaginary frequencies by LDA calculations. While producing a critical temperature that 

is very close to the experimental value (with a standard 
  = 0.1), the system is 

dynamically stable for the PBE. Comprehending this outcome may be facilitated by 

examining its phonon dispersion. In actuality, the PBE possesses a very weak phonon 

mode that vanishes into thin air when paired with the LDA (Allen & Dynes, 1975). Since 

the system is so near to the phase transition, even little adjustments to the functional or 

pseudopotential calculation parameters may have profound impacts (He et al., 2001). 

2.5 Thermodynamic Properties 

The evaluation of thermodynamic properties under temperature offers critical 

information on chemical stability, which is required for the identification of these 

materials in order to utilize them effectively in the industrial sector  (Li et al., 2009). 

Because a previous work  discovered that pressure has no effect on the changes of 

entropy and heat capacity with respect to temperature (Johannes & Pickett, 2004). The 

thermodynamic properties were calculated at zero pressure. 

Since energy generation based on thermoelectric offers a potential answer to the twenty-

first-century energy dilemma due to the fact that this method does not rely on fossil fuels 
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and is thus ecologically beneficial, antiperovskites materials  have become materials of 

interest in the thermoelectric industry since thermoelectric materials are used in 

thermoelectric generators to convert heat to electricity and vice versa (Togo & Tanaka, 

2015). Aside from producing electrical energy, thermoelectric technology also minimize 

thermal pollution caused by the presence of surplus heat in the environment (Ennassiri et 

al., 2018). The effectiveness of energy conversion is greatly dependent on the type of 

thermoelectric materials utilized (Wiendlocha et al., 2007). 

2.6 Research Gaps 

Numerous investigations on the superconductivity of antiperovskite materials have been 

done. However, many researchers examined the mechanical and electronic properties 

differently and were unable to make a connection with the materials' superconductivity. 

The band structures of the materials GaNCr3 and RhNCr3 indicate that both materials are 

metallic in.From spin polarized calculations, the ground states of both compounds are 

non-ferromagnetic. It has been suggested that the presence of superconductivity in these 

materials can be deduced from the substantial magnitudes of the electron-phonon 

coupling constant's electronic component. However, the properties were not linked to 

superconductivity in this investigation. 
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2.7 Conceptual Framework 

Figure 2 

Conceptual Framework 

Figure 2 illustrates the proposed conceptual framework. The sets of variable are three: 

the dependent, independent and intervening variables. The independent variables are 

pseudopotentials, input files and Thermo_pw code. The dependent variables are 

electronic, elastic, superconductity and thermodynamic properties while computational 

codes are the intervening variables. 

  



14 
 

CHAPTER THREE 

RESEARCH DESIGN AND METHODOLOGY 

3.1 Introduction 

In the present research, density functional theory was implemented. Using computational 

methods, several of the key materials were investigated rather precisely. This study 

aimed to fill the need in the industry for rapid and affordable methods of materials 

analysis. The computations in this study were conducted utilizing the Quantum Espresso 

computational software, renowned for its versatility in doing ab initio simulations of 

periodic as well as disordered condensed matter problems (Singh & Mazin, 2001). The 

technique of Density Functional Theory (DFT) can be employed to characterize a diverse 

array of materials, encompassing crystalline solids, molecules, as well as surfaces. Due 

to the codes ability to operate on a variety of platforms, including straightforward stand-

alone machines, calculations were performed in this study on both parallel and serial 

processors. The properties of matter are described via computational modeling, which is 

based on equations. Running computer programs written in quantum espresso code 

enables computer simulation (H.-S. Lee et al., 2007). 

Vanderbilt ultrasoft pseudopotentials were used to determine electron-ion potential. The 

rapid optimization of the expected cut off energy and features of the system is attributed 

by the smooth and transferable properties of the ultrasoft pseudopotentials method, 

particularly in relation to the development of the plane wave basis set. In electronic 

structure simulations, the PBE version of the GGA pseudopotential was used to account 

for exchange as well as correlation energy (Prokopenko et al., 2019) 

3.2 Description of the Working of Quantum Espresso 

Modelling and first-principles computation are the primary goals of the Fortran-based 

quantum espresso software was utilized to investigate and develop the electronic 
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structure using simulation and optimization techniques, employing Density Functional 

Theory (DFT), waves with planes basis sets, and pseudopotentials(Mackenzie & Maeno, 

2003). The Quantum Espresso functions pertaining to the plane wave density functional 

theory were derived by means of the plane-wave self-consistent field (PWscf), a 

collection of software tools designed to calculate electronic structures properties (Gordon 

et al., 2013).  

Computational packages were employed to iteratively solve the self-consistent Kohn-

Sham equations for a periodic structure. The obtained results were afterwards utilized for 

the purpose of data analysis and visualization. Quantum Espresso employs ground-state 

energy and one-electron Kohn-Sham orbitals to estimate atomic forces, stresses, and 

optimum structure. To obtain the band structure and optimize K points, Cutoff energy, 

and symmetry points, the data executes programs of scf, nscf, and bands calculations. 

PWscf modules pw.x and ph.x for input data and pp.x for post processing are supported 

by the program. 

The scripts for data post processing in pp.x retrieve the desired data from files created by 

pw.x, and then they prepare the data for plotting by putting them into forms that the 

plotting programs can read. Many of these programs end in ".x," such as Bands.x, 

Plotband.x, Dos.x, Ph.x, and Lambda.x. Band structure visualization from the bands.x 

files that were extracted by pw.x.plotband.x used the output from bands.x, which was 

generated when dos.x calculated the Density of States (DOS), and used it to draw charts 

depicting various band topologies. While ph.x determined phonon dispersion, Lambda.x 

computed the superconducting transition temperature. 
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3.3 Electronic Structure Properties 

The corresponding Perdew-Burke-Ernzerhof (PBE) Norm preserving pseudopotentials 

were used for all density functional theory computations. The ground-state ab-initio 

calculations properties have been effectively used the density functional theory (Gonze et 

al., 2002). In light of these considerations, the investigation was conducted with the 

plane wave self-consistent field (PWscf) technique, which was implemented within the 

Quantum Espresso software package. The results are comparable to those obtained using 

other all-electron techniques. The successful achievement of the optimization of the 

energy at the lowest ecut threshold was attained by the utilization of appropriate basis 

sets. Graphing was employed for verification of the correct cell size, k-point, and kinetic 

energy threshold values. The lattice constants for structural properties were calculated 

using the Munarghan equation of state and the energy volume relation (Murnaghan, 

1944). Dimensions of a unit cell, in essence when one material's lattice constant is 

different from another, stresses are introduced into the layer, preventing the epitaxial 

development of larger layers without defects. The density of state is calculated as a 

byproduct of computing the electronic structure using the necessary K-mesh, and the 

band structure was computed after structural optimization of non-self-consistent fields 

was performed with the input file's atomic positions left unchanged. 

The phonon band and PHDOS curves are calculated and plotted for all the three 

materials to provide information about the lattice dynamic properties. Both materials 

phonon dispersion curves and phonon− DOS were estimated along the high symmetry 

points (Γ-X-K-Γ-L-W-X) of the Brillouin zone. Because there are no imaginary phonon 

frequencies, the materials were dynamically stable. 
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3.4 Elastic Properties 

Most of a compound’s structural, thermal, and mechanical behaviors are determined by 

its elastic properties. Furthermore, elastic properties provide further information about 

how a particular material responds to external forces applied to the crystal. The thermo− 

pw code was used to calculate the elastic constants, and the strains were induced to the 

primitive vectors of the unstrained structures. The strain energy was determined by 

calculating the whole set of elastic constants, which enables the determination of shear 

modulus, Young's modulus as well as Poisson's ratio for all crystallographic orientations 

(Kamihara et al., 2008). This analysis aims to evaluate the presence of anisotropy in 

these materials. In our computations, the value of ecutrho was chosen as 720 Ry, while 

the wave functions cut-off of the kinetic energy was fixed at 35 Rydberg. The parameters 

used for the smearing width, convergence threshold and mixing beta were all set at 0.01 

Ry, 1.0 E-12 Ry, and 0.4 Ry, respectively. Each compound has a K-point split of

41818  . XcrysDen was used to examine the, while Linux was employed as the 

operating system. Both Xmgrace and GNU plot were used to create the visuals (Shim et 

al., 2001). The Bravais lattice vector of the hexagonal phase is given by;  
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 
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 
       

... (3. 1) 

Where, )(
2

1
1211 CC  . The matrix in (3.1) has a symmetric leading diagonal. The 

strain energy of hexagonal class crystals is constituted by 5 distinct elastic constants, 

which includes 33131211 ,,, CCCC  and 44C (Nyawere et al., 2014). A tetragonal crystal's 

defining feature, element X, is instead derived from another relation in the matrix Cij. 
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Limits of Voigt and Reuss types are calculated for both the bulk and shear moduli (Nye 

& Lindsay, 1957).The elastic constants can be derived from energy fluctuations by 

applying a little amount of strain to the convergent lattice structure provided by; 

)2C+  (C
3

1
=B 1211

        ... (3. 2) 

)3(
5

1
121144 CCCG         ... (3. 3) 

Equations (3.4) and (3.5) offer the Voigt limits of BV and GV, while Voigt-Reuss-Hill 

(VRH) provides approximations for the shear and bulk moduli (Davarpanah et al., 2020). 

33331211 2
2

1
(

9

2
CCCCBV        ... (3. 4) 

)421257(
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    ... (3. 5) 

Moreover, the Reuss limits are given by;  
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Using VRH, B and G are expressed as 

)(
2

1
RVVRH BBB          ... (3. 8) 

)(
2

1
RVVRH GGG 

        ... (3. 9) 

The Voigt and Reuss versions are indicated by the subscripts V and R, respectively 

(Kohn & Sham, 1965). The values of E and   are given by; 
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Three shear-type anisotropy ratios, denoted by the letters A1, A2, and A3, are present in 

hexagonal crystals. 
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One of the common approaches to calculating the Debye temperature is to estimate it 

from the mean sound velocity (VM) using equation (3.15) 

M

A

B

D V
M

nN

k

3/1

4

3















       ... (3. 15) 

In this context, the symbol " " denotes the Planck constant, " kB " symbolizes the 

Boltzmann constant, "NA" signifies Avogadro's number, and "VM" denotes the mean 

speed of sound in air (Ortenzi et al., 2011). An approximation of the formula for the 

mean speed of sound is as follows: 
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The bulk modulus B and the shear modulus G may be used to calculate the longitudinal 

sound velocity, indicated as l , and the transverse sound velocity, denoted as t . 
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3.5 Superconductivity Properties 

Established techniques were combined with more recent machine-learning techniques. 

The electron-phonon spectra were computed using density functional perturbation 

theory. Machine learning approaches are employed to not only make predictions, but 

also to comprehend significant physical factors, namely the strength of electron-phonon 

coupling (λ) as well as the average frequency of phonons ωln(Wälte et al., 2004). In 

practice, materials close to structural instabilities, or those with a high electron-phonon 

coupling constant, exhibit some anti-correlation between (λ) and ωln. This is especially 

true for soft phonon systems. The expected monotonic, but non-linear, growth in ωlnwith 

increasing pressure holds. After finding that transitional temperature decreases with 

pressure up to approximately 15 GPa, it rises to a maximum of around 5.4 K at 55 GPa. 

The conducted comprehensive high-throughput search showed that AlCCr3 had the 

highest superconducting transition temperature of the three material tested.  

The Perdew-Wang local-density approximation was employed in the computation 

regarding superconducting properties (Perdew & Wang, 1992). A conventional grid with 

dimensions of 166  was employed for the q-sampling on the phonons, which is 

consistent with previous theoretical research on inverted Perovskite(Ma et al., 2019). 

Using dense 888  q-point grid, the calculations were run to determine the sampling 

quality (Savrasov, 1996). The values of   and ωln were subsequently employed in the 

computation of the superconducting transition temperature. 
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
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         ... (3. 19) 

The value of 
  for transition metals ranges from 0.1 to 0.2. The value can be obtained 

by utilizing a modified version that uses the Bennemann-Garland empirical equation, 

which considers the estimated density of states at the level of Fermi (Bennemann & 

Garland, 1973). 
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The logarithmic average phonon frequency (ωln) using is given by; 





 ln)(2exp( 2
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ln Fa
d        ... (3. 21) 

The phonons in a crystal lattice can be used to explain a material's strength (Agora et al., 

2022). The vibration modes serve to mitigate the stresses experienced by the atoms 

displaced from their state of equilibrium due to symmetry. As a result, their oscillation's 

frequency is likewise reduced. The outcome is a decrease in crystal energy and a 

negative energy distribution to the soft phonons as a result of periodic lattice distortions 

caused by the effect. In this instance, the phonon frequencies will serve as the criterion 

for the stability of the crystal, and depending on their magnitude, instability may 

develop. The electron-phonon properties are computed utilizing the density functional 

perturbation theory. Previous studies have shown instances of superconductivity among 

antiperovskite carbides, nitrides, as well as phosphides (Bennemann & Garland, 1973). 

The phenomenon of superconductivity in compounds with conventional valence states 

can be linked to the regular pairing of transition atoms d electrons, facilitated by phonons 

(He et al., 2001). A 444  q-point grid was used for phonon computations on each 

structure to sample the Brillouin zone. For the EPC computations, a denser 121212  q-

point grid was employed. Fourier interpolation was utilized to determine phonons for 
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every selected q-point after the dynamical matrices were constructed on a 444  grid. 

Understanding material properties like thermal and electrical conductivity is aided by 

phonon research. A phonon is a particular type of crystal lattice vibration in which all of 

the particles vibrate at the same particular frequency (Koretsune & Arita, 2017). A 

dispersion relation is the correlation between the wave vector and the frequency of 

vibration, and it is as follows: 

)(k           ... (3. 22) 

In this context, the symbol krepresents the wave vector, symbol   represents the 

vibration frequency, and symbol c represents the sound velocity. Temperature at which 

transition occurs was determined using the McMillan equation, which was created from 

the Eilenberg theory inside the BCS theory and is represented by equation 3.23 (Dynes, 

1972). 
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C       ... (3. 23) 

The renormalized Coulomb repulsion, denoted as u , is assigned a value within the 

range of 0.1 to 0.2 (Bennemann & Garland, 1973).  

3.6 Thermodynamic Properties 

The knowledge of the entire phonon spectrum granted by DFPT makes possible the 

calculation of several important thermo-dynamical properties as functions of temperature 

T. In this research, the phonon contribution to the Helmholtz free energy ΔF, the phonon 

contribution to the internal energy ΔE, the entropy S, and the constant-volume specific 

heat Cv, at temperature T, are calculated within the harmonic approximation (H.-S. Lee 

et al., 2007). In relation to a solid medium, the propagation of sound is characterized by 

the presence of two transverse waves together with a longitudinal wave (Wu et al., 

1987). This phenomenon can be mathematically represented as;  
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Debye model heat energy is defined by equation (3.27).  

At Low temperature; 
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Debye heat capacity is defined as; 
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Equation (3.28) represents the Debye model's low-temperature specific heat capacity.  

At high Temperature; 

Due to the fact that x is small; 
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And since; 
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Equation (3.30) therefore becomes; 

TNKE B3          ... (3. 31) 

Debye heat capacity at high temperature becomes 

BNK
dT

dE
C 3         ... (3. 32) 

Where kBis the Boltzmann constant, n is the number of atoms per unit cell, N is the 

number of unit cells, ω is the phonon frequency, ωmax is the largest phonon frequency 

and g(ω) is the normalized phonon density of states with 1)(
max

0




 dg . Debye's 

specific heat capacity at low temperatures is represented by equation (3.28) and at high 

temperatures by equation (3.32). 

3.7 Derivation of the Governing Equations and Theorems 

The simulation is based on the Schrödinger equation's solution, the Density Functional 

Theorem, Born-Oppenheimer Approximations as well as Kohn-Sham Equations. The 

most effective and popular ab-initio approach is DFT (Gross & Dreizler, 1976). The 

foundation of this approach is in the Hohenberg- Kohn theorem, which suggests that the 

properties of the ground state of an electron gas with spatial variations can be described 

by a functional dependent on the electron density (Kohn & Sham, 1965). 

3.7.1 The Many Body Problem 

The equation developed by Schrödinger serves as the fundamental basis for conducting 

quantitative analyses of the properties exhibited by solid state materials. It is widely 

accepted that the Hamiltonian of the system is typically composed of the aggregate of the 
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system's particles' kinetic energy, denoted as T, and the summation of the energy 

resulting from electron-nucleus interactions, referred to as potential V. The effectiveness 

of computational methodologies can be attributed to the initial conversion of Schrödinger 

equation into Kohn-Sham equations, as well as the scientific comprehension of the 

correlation effects exhibited by interacting electrons in the presence of a gradually 

changing field. The solution of the Kohn-Sham equations can be easily obtained. A 

perspective on solids involves conceptualizing them as an assemblage of positively 

charged ion cores that are suspended within a surrounding medium composed of valence 

electrons. The electronic properties of a small, self-contained system consisting of N 

interacting electrons, subject to an external potential, exhibit similarities to the electronic 

properties of the system when it is in its lowest energy state.  

The external potential generated by an arrangement of atomic nuclei is traditionally 

conceptualized as originating from a fixed point of electrons. The ionized centers are 

comprised of the atomic nucleus and the electrons in the innermost orbitals, which are 

fully occupied. The core may be seen as a classical particle since it is so massive and 

moves so much slower than electrons. However, due to their diminutive size and rapid 

motion, vacuum electrons must be categorized as quantum particles. Only the valence 

electron contributes to reactions and forms bonds between atoms in a solid (Jha, 2005). 

The generic Hamiltonian of the many-body system can be expressed as; 
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Where;  

Mi = nuclear mass at the R location 

Me = The total weight of an atom situated at location ri 

Z = represents the mass number of an element. 
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Equation (3.33) can be concisely expressed as. 

nneneene WWWTTH        ... (3. 34) 

The electron and nuclear kinetic energies are represented by the first two components in 

the equation above, while the electron-electron, electron-nucleus, and nucleus-nucleus 

interactions are represented by the remaining three terms. The preceding equation cannot 

be solved due to the system's large number of independent variables (Turquette, 1958). 

The issue may be resolved by using Born Oppenheimer's adiabatic approximation. Due 

to the Bohn-Oppenheimer approximation, the nucleus has a mass that is significantly 

more than the electronic mass and travels more slowly than the electrons. The motion of 

the ions and electrons may be investigated separately from the adiabatic approximation. 

One function that describes the electrons and another that describes the ions can be 

combined to create the system's overall wave function (Cederbaum, 2004). 

     aaiai RxRrRr ,,          ... (3. 35) 

All of the interactions between the electron and the nuclei are taken into account by the 

Schrödinger equation. The system still has 10
23

 degrees of freedom and is hence 

complicated even if the issue has been broken down into an electronic component and an 

ionic component. In the context of the quantum many-body problem, it is conventionally 

thought that Wen represents the external potential, whereas Wnn is treated as a constant. 

However, a complication occurs with respect to Wee, as the collective wave function 

encompassing all electrons is contingent upon their respective coordinates, making it 

impossible to separate the issue into a single particle problem. The interaction of the 

electrons is what causes this. Further developments are required in order to do 

computations on an actual system as a result of this issue. Density functional theory 

(DFT) has been used as a strategy to deal with electron density, which is a variable 
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characterized by three coordinates. Unlike wave functions that depend on electron 

coordinates, DFT utilizes electron density to tackle this problem (Wright et al., 2014). 

3.7.2 Electronic Density 

Let N represent the total quantity of electrons and ri denote the position of electron i, 

along with its spin coordinate, σi = ↑ or ↓ (Papaconstantopoulos & Pickett, 1992). Wave 

function of a multi-electron system, which is contingent upon the spatial and spin 

coordinates NNe rrr  ............,( 2211 , elucidates the quantum mechanical phenomena 

exhibited by the system. Based on the two specified criteria, the wave function in 

question has been deemed genuine (Vaghela et al., 2022). Prior to any further analysis or 

processing, it is necessary to first normalize the data; 

1|............,(|...1 2

221121

...1

   NNeNee rrrdrdrdr
N




  ... (3. 36) 

Additionally, it is necessary for it to exhibit anti-symmetry; 

iijjejjiie rrrr  ...(...,...)...(.....,       ... (3. 37) 

The electron density, denoted as n(r), represents the quantity of electrons per unit volume 

at a specific place r within an electronic system (Vaghela et al., 2022). The equation 

representing the overall quantity of protons is as follows: 

  Nrdrn  3
         ... (3. 38) 

The expression of electron n(r) can be represented by;
 

   i

N

i rrrn   1         ... (3. 39) 

The function n(r) with multiple electrons is additionally suggested using the equation 

below; 

2

332232 |............,(|...)(
...1

NNeN rrrdrdrdrNrn
N




           ... (3. 40) 
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The expression on the right side in equation (3.40) has resemblance to the integration for 

wave function normalization (3.39), with the exception that it lacks one spatial integral 

and one coordinate. The calculation of the likelihood of finding an electron with spin in a 

volume element d3 at position r involves integrating the coordinates and spins of the 

remaining (N-1) electrons inside the electron density spin n (r) (Schaak et al., 2004). 

2

222

3

2

3

2 |......,((!...
1
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NNrrrNrdrddr
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rn
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


  
   ... (3. 41) 

The combination of equations (3.40) and (3.41) will result in; 

      Nrncrnrdr 


(       ... (3. 42) 

Determining the properties of materials using ab initio method requires that a solution to 

equation 3.41 is found. However, this equation is extremely difficult to solve numerically 

due to its huge dimensions, thus, necessitating approximations. The first and most 

important approximation is the Born-Oppenheimer approximation (BOA) which 

decouples the dynamics of the nuclei and electrons. Named after Max Born and J. Robert 

Oppenheimer, BOA allows the electrons and nuclear degrees of freedom to be separated 

giving room for the wave-function to be broken into its electron and nucleus 

components. The nucleus and electrons are attracted to each other with the same 

magnitude of electric charge, and hence they exert the same force and momentum. While 

exerting the same momentum, the nucleus with a much larger mass in comparison to the 

electrons will have a very small velocity and considered almost negligible. Thus, the 

motion of the nucleus is ignored in the solving of the Schrodinger equation. The 

electrons are much less massive than the nuclei and therefore the electrons will respond 

almost instantaneously to the movement of the nuclei. Thus, the energy for a given nu 

clear configuration will be that of the ground state of the electrons in that configuration. 

In principle, equation 3.42 may be mathematically solved to arbitrary accuracy by 
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representing it as a direct product wave-function and diagonalizing the Hamiltonian. 

However, the cost of this calculation scales exponentially with the number of electrons in 

the system and is intractable for all but the smallest of systems. 

3.7.3 Hartree-Fock Approximation 

In the variation technique, the wave functions for a multi-electron system are expressed 

as an anti-symmetrized product of a single electron wave function. The approximation 

being discussed in this context violates the fundamental requirement of the exclusion 

principle suggested by Pauli which states that, ―the many-body wave function must 

exhibit anti-symmetry when the coordinates of two electrons are interchanged‖. The 

fulfillment of this condition can be achieved through the construction of a slater 

determinant including single-particle orbitals (Rosner et al., 2001). In order to ensure 

compliance with this principle, it is necessary to incorporate the fermionic nature of 

atoms into a many-body wave function. This is particularly important when utilizing the 

Hartree wave function approximation, which does not inherently obey the 

aforementioned principle (Turquette, 1958). When the spatial coordinates of two 

electrons are interchanged, the resulting wave function exhibits a change in its sign. The 

mathematical expression for the Hartree-Fock wave function is expressed by the 

following formula: 

 


 '

|'|

),()'(
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2 dr
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rrnrn
er

HF

iHF

i       ... (3. 43) 

This technique is frequently employed in chemistry and is reliable for systems with few 

electrons.The Hartree-Fock approximation, which has resemblance on the standard 

single-electron model of electronic structure, posits that the distribution of N electrons is 

solely determined by the aggregate of all the one-electron distributions || 2 (Bardeen et 

al., 1957). It is important to remember that this is only a side effect of the original ansatz 
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and that in certain situations, modifications to notions like labeling electrons according to 

angular momenta are essential (Vaghela et al., 2022). 

By assuming a wave function with a single determinant, the Hartree-Fock theory ignores 

electron correlation. Describing the electronic structure accurately becomes difficult 

when the charged particles are subjected to a mean non-local potential resulting from the 

presence additional electrons. Although qualitatively correct, Hartree-Fock theory lacks 

the precision to offer quantitative predictions for many materials and compounds. The 

Hartree-Fock approximation corresponds to the conventional single-electron picture of 

electronic structure. This allows concepts such as labelling of electrons by angular 

momenta. Hartree-Fock theory by assuming a single-determinant form for the wave-

function, neglects correlation between electrons. The electrons are subject to an average 

non-local potential arising from the other electrons which can lead to a poor description 

of the electronic structure. Although qualitatively correct in many materials and 

compounds, Hartree-Fock theory is insufficiently accurate to make accurate quantitative 

predictions. Beyond Hartree-Fock formalism, Hartree-Fock is improved by taking into 

account the electron correlation. 

3.8 Density Functional Theory 

It was initially formulated in the 1961 by Hohenberg, Kohn, and Sham, and had a 

significant increase in prominence during the 1980s. DFT is a popular approach for 

predicting a material's electronic properties (Manyali et al., 2014). The three variables x, 

y, and z are utilized to calculate the electron density, which is then used to calculate 

ground state properties. The determination of the energy and other properties of a 

system's ground state is solely reliant on the electron probability density, denoted as 

n(r)(Hohenberg & Kohn, 1964). 
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 )(rnEEtot           ... (3. 44) 

By incorporating the exchange as well as effects of correlation into the calculation of 

total energy, the theory effectively addresses the limitations posed by the Hartree-Fock 

formulation. Correlation illustrates the disparity arising from the total energy of an 

electronic system as well as the energy of the system as calculated using the Hartree-

Fock approximation for an electron gas. On the other hand, exchange denotes the 

decrease in the energy of the coulomb. The determination of the ground state electronic 

structure is achieved by the utilization of Density Functional theory as a computational 

technique. While the practical implementation may lack precision, the theoretical 

framework remains accurate. Due to its capability to accurately model periodic bulk 

materials, surfaces, and interfaces, density functional theory is widely favored in the field 

of materials research. To maximize the use of computational resources, the 

pseudopotential plane wave technique is frequently used in computations. The 

anticipated value of every operator is dependent on the charge density. Kohn and Sham 

demonstrated the feasibility of mapping a many-particle system onto a non-interacting 

particle system by leveraging the functional relationship between the ground state energy 

and the ground state charge density. With a great refinement of the approximations used 

to better model exchange and correlation in 1990s, DFT which was considered 

inaccurate in the 1970s has evolved to be rather an accurate tool. As a matter of fact, 

solid-state system calculations agree satisfactorily with experimental data especially on 

the description of the structural and electronic properties of a vast class of materials. 

Computationally, DFT is cheaper compared to traditional methods like HF and its 

descendants based on the complex manyelectron wave-functions. With all these reasons, 

DFT is a common tool for describing and predicting the properties of the molecular and 

condensed matter systems. At this point, however, it is worthwhile noting that despite 
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recent improvements, there are still difficulties in using density functional theory to 

properly describe intermolecular interactions especially dispersion, charge transfer 

excitations, transition states, global potential energy surfaces, dopant interactions and 

some other strongly correlated systems. There is also a limitation in calculation of the 

band gap (underestimation of the band gap) and Ferro-magnetism in semiconductors. 

The subsequent sections provide a concise elucidation of the density functional theory. 

3.8.1 Hohenberg and Kohn Theorem 

A strategy to resolve the electronic component of the Schrödinger equation was put out 

by Hohenberg and Kohn in 1964. The first theorem establishes a relationship between 

the electron potential and the ground state electron density. Hohenberg and Kohn were 

able to illustrate a theorem by considering various external potentials, Vext and V'ext, that 

give rise to two Hamiltonians, H and H', respectively. They also considered various trial 

wave functions, ψ as well as ψ', for H with H', respectively. The ground state electron 

density produced by both is GSE  and is given by equations below;(Hohenberg & Kohn, 

1964) 

 |'||||'| HHHHEGS
    ... (3. 45)

    rdrnEE extextGSGS

3''''         ... (3. 46) 

This also implies 

    rdrnEE extextGSGS

3'         ... (3. 47) 

Adding equations (3.46) and (3.47), one obtains 

GSGSGSGS EEEE ''         ... (3. 48) 

This observation provides evidence that it is not feasible for two distinct external 

potentials to generate an identical electron density. Therefore, in theory, Hamiltonian 

operator can be uniquely determined given a charge density, allowing us to calculate the 
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wave function and all other features of a system. Since Vextand other ground state 

parameters including total energy, E n(r), are dictated using the electron density, the 

energy of an electron density functional may also be described. Everything's energy 

shows up as; 

       drrnrVrnFrnVrnWrnTrnE extextee )()()]([)]([)]([   ... (3. 49) 

The terms used to represent the kinetic energy possessed by electrons, which are the 

energy associated with electron-electron interaction, as well as the external potential 

amongst the particles are indicated as  )([)],([ rnWrnT ee as well as )]([ rnVext . The 

discovery of the exact solution to the Schrödinger equation would be possible if its 

knowledge were available. According to the second theorem, it may be said that for each 

given trial electron density n(r), where r represents the position vector given by;
 

  Nrdrn 3)(         ... (3. 50) 

Then; 

GSErnE )]([                     ... (3. 51) 

According to the initial theorem proposed by Hohenberg and Kohn, Hamiltonian and 

wave function can be uniquely determined by the trial density, denoted as n(r). It follows 

from the variational principle that; 

GSGS EHE   ||        ... (3. 52) 

Under the condition that the conservation of electron count is upheld, the ground state 

energy and density are associated with the functional minimum, denoted as E[n(r)]. The 

electronic chemical potential μ serves as the Langrage multiplier for the constraints. 

   ])([)()()]([ 3 NrdrndrrnrVrnFE extGS      ... (3. 53) 
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The equation provided above allows for the deduction of the remarkable observation that 

there exists a general functional, denoted as F n(r), which remains unaffected by external 

potential. To get the precise ground state energy and density, this function would need to 

be known and then it could be added to the equation and reduced (Diener, 1990). 

3.8.2 The Kohn-Sham equation 

The interpretation for exchange-correlation energy, Exc, revolutionized DFT and made it 

a useful tool for routine research of material properties. The term "exchange-correlation 

energy" is used to describe the fraction of the total energy that arises through non-

classical electrostatic interaction with the disparity occurring as a result of the true 

kinetic energy T as well as the non-interacting kinetic energy TS, when these 

contributions are shown to be insignificant (Hohenberg & Kohn, 1964). To solve this 

problem using the Hohenberg-Kohn functional, potential V
KS

(r) is first created, where the 

ground state charge density, n(r) is calculated. Extra system comprising non-interacting 

electrons that are subject to motion inside an external potential V
KS

 in the system have 

been considered, the electron density in the ground state is computed from the orbitals, 

and it is same as real interacting system with kinetic energy. In the absence of any 

external influences, the functional can be precisely characterized as; 

KSKS

S TrnTrnF  ||)]([)]([        ... (3. 54) 

The expression of the energy functional is presented as; 

   ])([')()()((min[)]([ 3 NrdrndrrnrVrnTrnE KS

S

KS    ... (3. 55) 

The Lagrange multiplier, denoted as μ', takes into account the preservation of the overall 

electron count. Due to nonlinear nature of this equation, a self-consistent solution is 

required. The exchange correlation energy, whose explicit form is unknown, presents the 

biggest obstacle. The exchange and correlation interactions that result from the Coulomb 



35 
 

contact between the electrons are included in the effective potential as well as the 

external potential (Manyali et al., 2014). 

3.8.3 Exchange-Correlation Approximation 

The functional is expressed in terms of density and is denoted as; 

xcOxc UnTnTnE  )()()(        ... (3. 56) 

Where; 

)(nT  = the correct kinetic energy functional 

)(nTO  = the interaction-free kinetic energy functional 

xcU = the electron-hole exchange correlation interaction. 

 The shape of xcU  cannot be determined easily and hence electron density-based 

approximation functions are used to provide a working definition. GGA and the LDA 

functionals are two prominent instances of approximation functional that are extensively 

employed in various applications.     

3.8.4 Local Density Approximation (LDA) 

The primary concept involves the local approximation of the exchange correlation 

energy  within an interacting electron system by utilizing the exchange-correlation-

energy of a homogeneous electron gas with a density of n(r)(Wright et al., 2014). It is 

expressed by the equation; 

drrnrnE xc

LDA

xc )(()]([ hom        ... (3. 57) 

Where; 

hom

xc  = function of the electron density n(r). 

LDA has demonstrated its efficacy in accurately predicting elastic modulus, vibrational 

frequencies as well as phase stability across a range of systems. However, the model 
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inaccurately predicts the properties related to magnetism of large-scale compounds and 

greatly underestimates the magnitude of the bandgap (Manyali et al., 2014). For systems 

with slowly fluctuating charge densities, the LDA is frequently surprisingly precise and 

typically produces excellent results. Since the LDA tends to prefer more homogenous 

systems and over binds molecules and solids, its shortcomings are already well known. 

These inaccuracies are accentuated and the bond lengths are excessively short in weakly 

bonded systems. Geometries provide favorable properties, with bond lengths and angles 

demonstrating a high level of precision, typically within a narrow range of deviation, in 

systems where the Local Density Approximation exhibits satisfactory performance. The 

estimated estimates for quantities like the dielectric and piezoelectric constants are 10% 

higher than the experimental values. Despite its simplicity, LDA works reasonably well 

in systems where the charge density is slowly varying. However it tends to under predict 

atomic ground state energies and ionization energies, while over predicting binding 

energies. It is also known to overly favour high spin state structure. 

Several experimentally important physical parameters may be estimated to a relevant 

degree of accuracy, making DFT-LDA preferable to techniques like Hartree-Fock. In 

cases in which it is not apparent whether or not the LDA applies, complications may 

arise. 

3.8.5 Generalized Gradient Approximation (GGA) 

The expansion of the density matrix in terms of its derivatives and density, known as the 

semi-classical expansion, can be seen as an initial approximation to the local density 

approximation. It incorporates the consideration of charge density gradients. The 

subsequent equation illustrates the potential expression of the exchange-correlation-

energy which can be illustrated by the equation; 
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drrnrnrnE xc

GGA

xc )(),(()]([1         ... (3. 58) 

The description of binding energies of real systems using the Local Density 

Approximation was significantly improved with the application of the Generalized 

Gradient Approximation. However it performs a poor job of precisely treating the 

hydrogen bond and predicting the lattice parameters. Although GGA seems superior to 

LDA, it too has a number of drawbacks. GGA fails to accurately treat the hydrogen’s 

bond which is clearly manifested through expansion and hence softening of bonds. 

3.8.6 Hybrid Functional 

Hartree-Fock approaches overestimate the band-gap, whereas LDA and GGA both 

undervalue it in computations. To overcome the above threat, hybrid functional has been 

developed; however, their high computational cost presents a problem. A fractional 

Hartree-Fock exact exchange energy and an explicit density functional are combined to 

create hybrid functional. The goal of this combination is to accurately forecast band gaps 

and total energies given as;  




dUE
xcO

xc 
1

        ... (3. 59) 

Where; 

xcU  =   the exchange correction energy  

  = interelectronic coupling strength parameter. 

3.8.7 The Perdew, Burke, Ernzerhof Exchange Correlation Functional 

When employed for the calculation of atomic positions, it overestimate the length of the 

bonds, resulting in an average error and absolute mean error of approximately 0.01 

(Perdew et al., 1998). Consequently, its utility is substantially diminished compared to 

LDA, which produces a mean error of 0.001. In order to determine bond energies, the 
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PBE method is frequently utilized due to its proven ability to significantly reduce the 

average absolute error to a level approaching chemical precision. Because of its 

construction, which guarantees that both the correlation and exchange components 

maintain a number of physical features, it was selected for this study. In addition, it 

works well with the closed system that this article is exploring.  

3.9 Plane Waves 

The study of the interactions between nucleus and electrons was addressed by employing 

the Density Functional Theory and the Born-Oppenheimer approximation. This approach 

facilitated the formulation of the single particle problem, which pertains to a system 

consisting of 60 stationary nuclei that move within an effective potential. The expansion 

of plane waves in the Kohn-Sham wave function plays a significant role in the 

computation of the total energy of periodic solids. The solutions to the Schrödinger 

equation for a single particle, characterized by a periodic potential and exhibiting 

periodicity, can be described using Bloch's theorem given by; 

)()( ruer kj

ikr

kj          ... (3. 60) 

The electronic states are categorized using the same k vector, which is determined within 

the initial Brillouin zone. The given segment may be expanded by employing a basis set 

comprised of plane waves, exhibiting the characteristic periodicity observed in a crystal 

structure. 

rGki

G

JGkj keCru )()(         .. (3. 61) 

Where; 

)()( rGeCr kj

ikr

G

jkkj          ... (3. 62) 

Kohn-Sham equations are given as; 
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Where; 

)()()()( rVrVrVrV xcHexteff        ... (3. 64) 

And 
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
     ... (3. 65) 

Where, xcHext VVV ,, respectively, stand for the nuclei's exterior, Hartree, and exchange 

correlation potentials. The expression's factor 2 accounts for the spin   and , and    is 

a step function that can either be 0 or 1. The Fermi energy is determined using the 

quantity of electrons, Ne, present within the single cell. It represents the energy level with 

the maximum energy that is occupied by a single particle. This energy level is 

represented as; 

  rdrnC

3)(          ... (3. 66) 

Bloch's theorem facilitates the extension of electronic wave functions at every K-point 

through the utilization of a discrete set of plane waves. This theorem has been employed 

to address the problem of computing an infinite quantity of electronic states at an 

unlimited quantity of K-places distributed within a single unit cell. The current method 

still necessitates an infinite quantity of computations for the various K-points, therefore 

resulting in only a marginal improvement. The wave functions at a specific point can be 

represented by a wave function that occurs on a single k-point in k-space due to the 

similarity of electronic states at neighboring k-points (Yang & Whitfield, 2023). 
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3.10 Energy Cut-off 

In the analysis of a material, the Plane Wave Basis Energy is computed using DFT. The 

investigation of cut-off energy optimization was conducted using a constant k-point-

mesh. The energy cut-off convergence for AlCCr3 is depicted in Figure 3. 

Figure 3 

Total Energy Convergences with Plane Wave Cut-Off 

 

The convergence test for the k-point grid as well as plane-wave energy cut-off was 

conducted at certain lattice constants, and the atomic positions were relaxed at a 

temperature of 0 Kelvin. It was important to adjust the volume while relaxing the atomic 

coordinates in every DFT computation. The choice of a k-point grid for which the results 

are anticipated to converge, followed by the system being simulated using Quantum 

Espresso by gradually increasing values of Energy Cut off. The Energy Cut-off values 

derived and their output Rydberg's energy values were displayed as shown in Figure 3 

above. The figure shows that an energy cut-off of less than 30 Ry is insufficient; hence 

values higher than 30 Ry should be used. However, larger energy cut-off does not 

improve accuracy; instead, it lengthens CPU time, raising the cost of calculation. 
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3.11 K-Points 

Electronic states are only allowed at specific k-points that are determined by the 

boundary limitations imposed on the bulk solid. The quantity of permissible k-points 

exhibits a direct relationship with the volume of the solid. However, it should be noted 

that at each of the infinitely many k-points that constitute the solid's infinite number of 

electrons. The Bloch theorem is employed to account for periodicity and replaces the 

computation of an infinite set of electronic wave functions with the computation of a 

finite set of electronic wave functions at an infinite number of k-points. The 

determination of the electronic potential in a bulk solid relies on the occupied states. In 

theory, an endless number of calculations would be required to accurately compute this 

potential. K-points in close proximity have nearly indistinguishable electronic wave 

functions. The electronic wave functions can be expressed across a specific region of k-

space by utilizing the wave functions at a solitary k-point. In this scenario, the 

determination of the electronic potential and, consequently, the overall energy of the 

solid can be achieved by employing a restricted set of electronic states (k points). The 

generation of atypical k-points was automated in this work by the utilization of the Monk 

horst-Pack method. The Monk Horst-Pack approach involves integrating the irreducible 

portion of the Brilouin Zone. Due to the recognized requirement of transition metals for 

extensive k-point grids, a comprehensive optimization technique was employed. The K-

point size for AlCCr3 upon convergence is depicted in figure 4. Higher K-points are 

recommended but do not really boost accuracy 
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Figure 4 

Energy vs. K-Points Graph 

 

3.12 Pseudopotential Approximation 

Pseudopotentials (V
ps

) are used to improve computational efficiency by substituting an 

effective potential at the center of an atom. It is generally agreed that an atom chemical 

as well as physical properties are entirely dictated by their valence electrons. This leads 

to the development of the pseudo potential approximation. This technique takes for 

granted that the core electrons are immobile and that ionic interactions are entirely 

charged. The pseudopotential approximations leverage this trait in order to avoid 

incorporating the atom's center states. Instead of the formidable strong nuclear potential, 

the pseudopotential is employed to impose a reduced "pseudo-potential" on a series of 

pseudo-wave functions apart from other authentic valence wave functions. In order to get 

the major significant of the outermost electrons in the electronic structural problem, a 

pseudopotential approximation is a fantastic tool.  

The electrons located in the inner regions of an atom often exhibit strong binding to the 

nucleus, rendering them relatively resistant to external perturbations. This resilience can 

be attributed to the smooth nature of their wave functions when positioned farther out 

from the nucleus. However, as these electrons get closer to the nucleus, their wave 
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functions experience fast fluctuations. Determining the valence of an atom is mostly the 

job of the wave functions on the periphery of the nucleus. Since the electronic density of 

the core and cancels itself, it is assumed that the core is at rest even if it serves as a 

border restriction on the wave functions beyond its region. The authentic Columbic 

potential is more robust and refined than any imitation. Pseudopotentials with 

comparable behavior to all electron potentials are selected instead. These 

pseudopotentials loosen the norm conservation requirement somewhat, but still need the 

scattering properties to match throughout a broader energy range. The purpose of 

incorporating the charge augmentation mechanism in the pseudopotentials is to reinstate 

the principle of norm-conservation, hence ensuring the appropriate allocation of valence 

charges within the center region. Besides contributing to improved smoothness and 

transferability, they permit the former. 

3.12.1 Norm conserving pseudopotential 

The aforementioned statements serve to streamline the understanding of core electrons 

by immediately focusing on their properties and properties. A norm-preserving pseudo-

potential is employed to ensure the normalization of the motion of the non-periodic core 

electrons. The introduction of periodicity in the motion of electrons enables the 

attainment of a Gaussian distribution through the process of normalizing. This 

probability distribution facilitates faster convergence. In the context of forces and 

stresses, even little alterations in either magnitude or direction have the potential to 

induce disruptions within the system. 

3.12.2 Ultra Soft Pseudo-Potential 

Practical solutions to the self-consistent Kohn-Sham equation necessitate the utilization 

of many approximations hence several techniques have been devised to achieve quick 

convergence at low cost to accuracy (Pickett, 1989). The utilization of pseudo-potentials 
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incorporating ion cores, which encompass deep inner core electrons and nuclei, enables 

the effective utilization of plane wave basis sets on electronic structure calculations. This 

is achieved even though ions have a limited impact on the properties of solids. Hellmann 

first proposed the use of pseudo-potentials in 1936; they substitute an effective potential 

term for the Coulomb potential in the Schrodinger equation (Hellmann & 

Kassatotschkin, 1936). This is due to the fact that pseudo-potentials imitate the 

properties of ion cores (Kresse & Joubert, 1999). 

Pseudo-potential approaches have common theoretical underpinnings, but different 

methods are used in their production, resulting in a variety of distinct forms. Most plane-

wave electronic structure codes use either a norm-conserving or ultra-soft pseudo-

potential. They make it possible to properly numerically converge with acceptable 

computer resources by using a basis set having substantially low cut-off to represent the 

electron wave-function (H.-Y. Lee et al., 2012). Bloch proposed the projector augmented 

wave pseudo-potential in 1994 as a means of transforming a standard Kohn-Sham 

problem with numerically inconvenient behavior with some other variables built in 

(Blöchl, 1994). 

The chosen method effectively captures the nodal properties of the wave function of 

valence electrons and also enables the incorporation of higher core states inside the spin 

coupling interaction mechanism (Wang & Perdew, 1991). DFT computations may be 

performed with improved computer efficiency using this technique, which is an 

extension of the pseudopotential as well as linear augmented-plane-wave approaches. In 

comparison to ultra-soft pseudo-potentials, PAW potentials tend to be more precise 

(Kresse & Joubert, 1999). The core radii of the projector augmented wave potentials are 

comparatively lower than those of the ultra-soft pseudo potential (Vosko et al., 1980). 

The basis sets as well as energy cut-off required are comparatively greater as a result of 
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the decreased core radii of the projector augmented wave potentials. If such pinpoint 

accuracy is unnecessary, the more primitive may be utilized instead. The computational 

cost of model structures incorporating any of these aspects does not exhibit a higher 

expense when employing the projector augmented wave method compared to the 

ultrasoftpseudopotential approach, despite the larger size of the basis set (Kresse & 

Joubert, 1999). This phenomenon can be attributed to the negligible alterations in the 

energy cut-offs for carbon, nitrogen, and oxygen. The inner core electrons and nuclei 

were modeled using ultrasoft pseudo-potentials in this investigation. Ultra-soft 

pseudopotentials converge more quickly than norm-conserving ones. 

3.13 Self-consistent Field (scf) Cycle 

In computational techniques, the Schrodinger equation is expressed as;  

)()(
2

1
)( 2 rrVrH iiieffi  








      ... (3. 67) 

The 
effV  is expressed as;  

)]([)]([)()( rnVrnVrVrV xcHioneff       ... (3. 68) 

The Hamiltonian operator, denoted as H, encompasses the operator for kinetic energy as 

well as an effective potential based on the equation; 1 mee . The electron density 

n(r) is calculated using the wave function, )(rH i , hence it follows that relies on itself. 

A stepwise solution to the Kohn-Sham equation is obtained by initially approximating 

the electron density, followed iteratively updating it up to a point where input and output 

electron densities, n(r) as well as n'(r), respectively, become nearly equal within a 

specified threshold. The iteration process is halted once this condition is met. The self-

consistent field method, depicted in Figure 5 as a flowchart, illustrates this concept. The 

flowchart illustrates the sequential procedures involved in solving the Kohn-Sham 

equations pertaining to a certain collection of the nuclear centers. The construction of the 
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periodic table involves initially formulating informed hypotheses on the wave function of 

hypothetical atoms possessing atomic numbers (Z) and masses (A) that align with the 

observable properties of real atoms.  

The determination of charge density is achieved by establishing the ecutrho, a value 

contingent upon the specific pseudopotential employed. The formation of a solid is 

achieved through the determination of the atomic locations within the unit cell, the 

Bravais lattice structure, the nature of element present, and the lattice constant. In order 

to address the issue arising from the coulombic potential exerted by the nucleus on the 

electrons, the implementation of pseudo potentials is deemed necessary. The selection of 

a specific pseudo potential dictates the corresponding exchange-correlation solution that 

needs to be identified. The equations of Kohn-Sham pertaining to a single particle were 

resolved by executing a computer script that utilizes an executable command to 

determine the Hamiltonian and potential, thereby yielding a novel electron density. The 

procedure is repeated until targeted energy level is attained. Upon achieving 

convergence, the system's energy level undergoes a reduction to its minimum value, 

while the interatomic forces approach a state of minimal magnitude. The attainment of 

this outcome was facilitated by establishing the convergence threshold at a magnitude 

ranging from 10
-12

 Ry. It is not necessary to have an exact solution to the relevant 

eigenvalue problem at the beginning of the scfcycle if it would delay the procedure's 

convergence and the K-S equations must be solved repeatedly. When the scf method has 

almost converged, the effective potential 
effV  scarcely fluctuates; hence there are less and 

fewer shifts in the eigenvalue. 
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Figure 5 

Computational schematic representation of the S-C loop for the solution of the K-S 

Equation 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

It is predicted that there is a minimum-energy-providing electronic charge density. Based 

on these calculations, the effective potential is calculated, )()(),( randVrVrV nucxcH . As a 

result, Hamiltonian of the system is expressed as; 

initial estimate 

 

Determine potential effectiveness

 

Calculate the K-S problem.

 

Calculate electron density 

 

Optimized? 

Output parameters 

Effective potential, electronic properties, elastic properties. 
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The exact position for the minimum energy is denoted as i . Upon normalization the 

equation becomes; 

  ||| OEH        ... (3. 70) 

But; 

0|            ... (3. 71) 

Therefore, OE  is obtained from the estimated charge density, )(rn  

Consequently;  

OErn )(          ... (3. 72) 

This illustrates self-consistency by showing that the calculated density is the same as the 

expected density. If there is a discrepancy between the calculated density and the 

predicted density, the process is repeated until the two values agree. Using the charge 

density from the prior step, a new estimate for the density is generated. The selection of 

the basis set entails making an important distinction between the starting data and the 

solution or parameter optimization. The choice of the advanced crystal grid and atomic 

orbital calculation is made during this step. The Schrödinger equation must then be 

resolved as a following step. Since there can only be one electron system in an atom, this 

is accomplished by calculating the density of single electron wave functions. As an 

example, the geometrical properties of a crystal grid and the energy connection between 

its locations may be calculated using the findings (Kravtsova et al., 2009). The findings 

of parameter calculations for atomic structures may be utilized to estimate the material's 

strength (Iskandarov et al., 2011). The findings of parameter calculations may also be 

utilized to ascertain the properties of the electron structure, the band structure, and the 

elastic properties (Alemany, 2013). 
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CHAPTER FOUR 

RESULTS AND DISCUSSIONS 

4.1 Introduction 

This chapter presents the findings interpretation and discussion of the electronic structure 

properties, elastic, superconducting as well as thermodynamic properties of hexagonal 

antiperovskite XCCr3 (X=Al, Ga or Zn) and also compares the results with other studies. 

4.2 Electronic Structural Properties of Hexagonal Antiperovskite 

4.2.1 Structural Properties 

Hexagonal phase of chromium based antiperovskite with space group P63/mmc was 

considered. The original structure from the Aflow database and the optimized structure 

were simulated using the same values for ecutwfc and ecutrho using Xcrysden software 

(Kokalj, 1999). In the ab-initio calculations, the first step is determined by the 

equilibrium parameters of the structural properties. The lattice parameter of the 

compound was obtained by computing of full energy for the unit cell versus the volume. 

The structures were visualized before and after optimization. The optimization of the 

volume was achieved by minimizing the overall energy with regard to the volume, 

employing Murnaghan's equation of state.  

Figure 6 

 Crystal Structure of Unit Cell of AlCCr3 
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4.2.2 Electronic Properties 

Figure 7 depicts the predicted band structure of XCCr3 (X= Al, Ga or Zn) in the BZ at 

ambient pressure with FM spin configuration along the high symmetry direction. A 

visible representation of the Fermi level designated by a red line and set at zero can be 

observed. The band structures of all the three compounds exhibit metallic structures. The 

bands, which range in energy from -6 eV to 6 eV, are mostly made up of the Cr-3d and 

C-2s states, suggesting that the electrons are itinerant.  

Figure 7 

Band structures of (a) AlCCr3, (b) GaCCr3 and (c) ZnCCr3. 
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4.2.3 Density of States 

It was estimated in order to gain a deeper understanding of the electronic band structure, 

as depicted in Figure 8 for XCCr3 (X= Al, Ga or Zn). A significant density of states is 

seen at the Fermi level, denoted as N(EF), with respective values of 4.89, 5.72, and 4.32 

states per electronvolt (states/eV) for AlCCr3, GaCCr3, and ZnCCr3. This is due to the 

Fermi level's proximity to the DOS peak. 

Figure 8 

Densities of the states of (a) AlCCr3, (b) GaCCr3 and (c) ZnCCr3 

 



52 
 

4.3 Elastic properties 

The correct structural relaxation of the material to the structure's almost zero stress 

condition was used to calculate the elastic constants tabulated in table 1. The lattice 

vectors are then subjected to perturbations and the resultant stress tensor is determined, 

enabling the ionic degrees of freedom to relax. The estimated elastic constant values 

meet the Born criteria condition and this serves as evidence that the three structures 

examined in this study exhibit elastic stability. 

The lattice parameter of the compound was obtained by computing of full energy for the 

unit cell versus the volume. The values of total energy were fitted to the Murnaghan’s 

equation of state (Ledbetter, 1977). The lattice constants a were obtained as; 3.201Å for 

AlCCr3, 3.241Å for GaCCr3 and 3.20 Å for ZnCCr3, which are very near to the 

experimental values of 3.02, 3.037 and 3.102Å respectively as tabulated in table 1. 

Considering that the zero-point motion and thermal effects are not taken into account, the 

calculated lattice constants agree quite well with other studies (Liu et al., 2017). This is 

largely sufficient to allow the further study of dynamical and thermodynamic properties. 

Table 1 

Calculated lattice constants in (Å) and elastic constants in GPa 

Material a (Å) C11 C12 C13 C33 C44 

AlCCr3 

GaCCr3 

ZnCCr3 

5.207 

5.813 

5.721 

243.2918 

189.8909 

187.4470 

28.0521 

27.7094 

21.6480 

21.5749 

28.8399 

10.6917 

191.9535 

178.0325 

105.5867 

116.5725 

64.2360 

74.6348 

4.3.1 Elastic Anisotropy 

When a material exhibit different values when measurements are made along different 

axes, the material is said to be anisotropic. The response of the elastic properties of solids 
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to the direction of strain is defined by the elastic anisotropy, denoted by the symbol A. 

Table 2 presents the calculated shear-type anisotropy ratios derived using the Cij 

measurements. 

Table 2 

Shear type anisotropic ratios compared to results from other studies 

Material A1 A2 A3 

AlCCr3 (This work) 

(Shao et al., 2014) 

GaCCr3 (This work) 

(Shao et al., 2014) 

ZnCCr3 (This work) 

(Shao et al., 2014) 

0.813 

0.910 

1.189 

0.780 

0.843 

0.785 

1.083 

0.981 

0.792 

0.653 

0.900 

0.874 

0.880 

0.719 

0.941 

0.874 

0.758 

0.862 

 

The crystal exhibits isotropy when the value of the elastic anisotropy ratio, denoted as A, 

is equal to 1. Alternatively, anisotropy can be represented by values of A which are either 

smaller or greater than one. All the materials being examined exhibit elastic anisotropy. 

The results of the computations utilizing the Voigt and Reuss approximations are 

tabulated in table 3. The obtained values are a little different from the theoretical values 

by shaoet al. This may be due to the fact that, the results were compared with hexagonal 

structure studied in this research, while shao et al. studied cubic structure.  Furthermore, 

there was no data on hexagonal structure to compare with at the time of reporting this 

work.  

Substance's ability to endure changes in volume when crushed from all sides is 

determined by its bulk modulus which directly relates to its ability to withstand change 

of shape. From table 3, it is noted that ZnCCr3 has the lowest bulk modulus value and 
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GaCCr3 has the greatest value hence it has the highest ability to resist fracture among the 

three materials examined in this study. 

Shear modulus is a number that represents a material's capacity to withstand transverse 

deformation. A higher shear modulus number implies that the solid is extremely stiff and 

may need more effort to be bent. AlCCr3 has the highest shear modulus value of the three 

investigated compounds, making it the most capable of resisting plastic deformation. 

The tensile elasticity of a material can be measured using a ratio known as the Young's 

modulus. This refers to the quantification of a material's ability to resist changes in size 

when subjected to compression or strain along its longitudinal axis. It is calculated by 

dividing longitudinal stress by strain, and it provides information on a material's 

stiffness.  

The Pugh's ratio gauges a material's ductility or brittleness. This ratio's critical value is 

listed as 0.5. Brittleness is represented by a number less than 0.5, and ductility is 

represented by a value greater than 0.5 Table 3's findings demonstrate that all three of the 

materials' Pugh's ratios are higher than the critical level. This suggests that they are all 

ductile, even though AlCCr3 has the greatest ductility. By dividing the lateral strain by 

the longitudinal strain in the direction of the stretching force, one may determine 

Poisson's ratio. The ratio typically ranges from 0 to 0.5. Although GaCCr3 has a greater 

Poisson's ratio than the other two materials, it was found that all three are brittle. 
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Table 3 

A comparative analysis of the results related to Young Modulus, E in Gpa, Poisson ratio 

 , and Pugh Ratio (GH/BH), alongside the Bulk Modulus and Shear Modulus in Gpa, 

employing the Voigt, Reuss, and Hill Averaging Scheme. 

Material BV BR BH GV GR GH E   GH/BH 

AlCCr3 (This work) 

(Shao et al., 2014) 

GaCCr3(This work) 

(Shao et al., 2014) 

ZnCCr3 (This work) 

(Shao et al., 2014) 

59.57 

34.80 

80.96 

36.99 

43.82 

36.23 

58.91 

51.20 

80.90 

45.23 

41.16 

56.98 

59.24 

57.35 

80.93 

54.58 

42.49 

50.51 

123.75 

70.95 

73.41 

71.51 

85.66 

78.56 

122.70 

103.42 

72.57 

68.35 

81.77 

75.24 

123.23 

123.21 

72.99 

67.26 

83.72 

89.27 

218.31 

199.30 

168.35 

201.53 

151.60 

132.25 

0.11 

0.40 

0.15 

0.41 

0.09 

0.04 

2.08 

2.15 

0.90 

1.23 

1.97 

1.72 

 

4.3.2 Debye Temperature 

The Debye temperature is a basic parameter that corresponds with a variety of solid-state 

physical properties, including specific heat, elastic constant and superconducting 

temperature. The Debye temperatures for AlCCr3, GaCCr3, and ZnCCr3 are 718.557K, 

483.170K, and 509.329K, respectively, as tabulated in table 4. AlCCr3 exhibits the 

greatest Debye temperature among the considered materials, hence indicating superior 

interatomic bonding, melting point, hardness, and conductivity to heat relative to the rest 

of the materials. 
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Table 4 

A comparison between the values obtained by the use of the Voigt-Reuss-Hill Average 

method for Compressional (VP), Bulk (VB), Shear (VG), Average Debye Sound Velocities 

(VD), Solid Density )/( 3cmg , and Debye Temperature ΘD (K), and the corresponding 

values reported in earlier studies. 

Material VP VB VG VD   (g/cm
3
) ΘD(K) 

AlCCr3 (This work) 

(Shao et al., 2014) 

GaCCr3 (This work) 

(Shao et al., 2014) 

ZnCCr3 (This work) 

(Shao et al., 2014) 

6790.41 

- 

5340.79 

- 

5001.94 

- 

3495.72 

- 

3598.69 

- 

2626.48 

- 

5041.55 

- 

3417.63 

- 

3686.56 

- 

5416.13 

- 

3750.01 

- 

3940.87 

- 

5.43 

- 

5.59 

- 

5.51 

- 

718.56 

532.43 

483.17 

497.12 

509.33 

524.53 

 

4.4 Superconductivity Properties 

The materials had average electron-phonon coupling constant (λ) that is computed to 

range between 0.61 and 0.82 (table 5) and less than 1.0, indicating moderate electron 

phonon coupling strength. This suggests that the average electron-phonon coupling 

parameter in this material is not significantly influenced by the high frequency phonon 

modes. The phonon density of states analysis reveals influence of the motions that occur 

between X as well as Cr atoms. This is not unexpected given that X and Cr orbitals 

predominate in the states close to the Fermi energy. Where μ∗ denotes an effective 

screening coulomb repulsion parameter and ωln is the logarithmic averaged phonon 

frequency. The value of μ∗is found to be 0.10, giving the values of ωln = 382.2K, 

121.64K and 217.56K for AlCCr3, GaCCr3 and ZnNCr3 respectively. The value of 

μ∗fluctuates between 0.10 and 0.16 in the majority of research (Dynes, 1972). The 

superconducting transition temperature is calculated using these values for μ∗and ωln. 
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When the Coulomb repulsion parameter is set at 0.10, the resulting transition 

temperature values for AlCCr3, GaCCr3, and ZnNCr3 are 6.82 K, 12.01 K and 8.21 K, 

respectively. The obtainedvalues for all materials, as presented in table 5, exhibit a high 

level of agreement with the established experimental results. 

Table 5 

Density of States (DOS) near the Fermi level and the average electron-phonon coupling 

parameter (λ), the logarithmic frequency (ωln), and the superconducting transition 

temperature for the hexagonal XCCr3 (A=Al, Ga, or Zn) for this research, as well as a 

comparison with the results of available previous studies. 

Compound  DOS (states/eV)   ωln (K) TC (K) 

AlCCr3 (This work) 

(Shao et al., 2014) 

GaCCr3 (This work) 

(Shao et al., 2014) 

4.89 

3.53 

5.72 

3.08 

0.60 

0.61 

0.77 

0.78 

382.2 

291.51 

121.64 

253.91 

6.82 

6.67 

12.01 

11.29 

ZnNCr3 (This work) 

(Shao et al., 2014) 

4.32 

2.81 

0.70 

0.67 

217.56 

260.27 

8.21 

8.23 

 

The link between the vibration frequency ω and the wave vector q is often known as the 

lattice dynamic theory or as the interlink of dispersion (Gonze et al., 2005). The 

expression of phonon modes can be described as follows: in a crystal lattice, if an 

element cell has n atoms, then there exist a total of 3n modes, consisting of three acoustic 

modes and twelve optical modes. The phonon spectra as well as the total and partial 

phonon density of states of the examined antiperovskite material are depicted in Figure 

9. The first three phonon modes are low-frequency acoustic modes. The next twelve 

phonon modes include optical, transversal, and longitudinal modes. Generally, there is 
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one longitudinal mode and two transversal modes. The fact that all of the frequencies are 

positive indicates that the structures were dynamically stable. 

Gaps were observed at the zone center C that was divided by optical phonon modes. The 

observed gaps in between the longitudinal optical (LO) and transversal optical (TO) 

phonon modes can be attributed to the discrepancy in mass between atoms C and X. The 

term "splitting" refers to the categorization of this gap as LO-TO and is highlighted using 

a red line. The splitting observed in this phenomenon can be attributed to the dipole to 

dipole interactions that arise from the collective electric field resulting from the 

displacements of ions at the macroscopic level. Because X atoms have a greater mass 

than other atoms, it causes the acoustic area (transverse and longitudinal acoustical) to 

vibrate in accordance with the varied masses of the compound's atoms. The final three 

phonon modes, on the other hand, are caused by the vibrations of C atoms, whereas nine 

optical modes are caused by X atom vibrations. To the best of our knowledge, no 

investigation has been done of this property using both theoretical and experimental 

approaches, as anticipated by our analysis of lattice dynamics. 
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Figure 9 

 Phonon frequency curves for (a) AlCCr3, (b) GaCCr3 and (c) ZnCCr3 along the 

hexagonal Brillouin zone symmetry lines. 

 

Figure 10 displays the complete and partial phonon density of states pertaining to atoms. 

The optical modes exhibit two distinct peaks characterized by high frequencies ranging 

from 180 to 200 THz. These peaks are hypothesized to be associated with vibrational 

activity originating from the Cr and C atoms. The vibration of the X and Cr atoms causes 

two peaks to appear at 120 and 280 THz. There is a distinct peak at 180 THz due to the 

X atoms' low frequency and greater mass vibration. 
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Figure 10 

A plot of phonon densities of states of (a) AlCCr3, (b) GaCCr3 and (c) ZnCCr3. 

 

4.5 Thermodynamic Properties 

Using the harmonic Debye model, the thermodynamic properties of hexagonal XCCr3 

(X=Al, Ga or Zn) superconductors were examined. The exchange and correlation terms 

were also employed in the geometric optimization, which was carried out using ab-initio 

thermo_pw code. The temperature range of 0K to 800K is suitable for the use of the 

quasi harmonic Debye model, which is used to calculate thermodynamic properties of 

hexagonal structures XCCr3 (X=Al, Ga, or Zn). The evaluation of thermodynamic 

properties under temperature offers critical information on chemical stability, which is 

required for the identification of these materials in order to utilize them effectively in the 

industrial sector. The phonon contribution to the Helmholtz free energy ΔF, the phonon 
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contribution to the internal energy ΔE, and the constant-volume specific heat Cv, at 

temperature 0-800K, are calculated. 

The Debye vibrational energy for all the materials remains constant below 100K.Beyond  

100K, there are linear increase in vibrational energy with temperature as shown in 

Fugure 11. 

Figure 11 

Debye energy of vibration (KJ/Nmol) of (a) AlCCr3, (b) GaCCr3 and (c) ZnCCr3 over 

different temperatures. 

 

For temperatures below 100K, the values of heat capacity of the compounds are 

essentially zero. At low temperatures below 200K, the heat capacity of the three 

compounds obeys the formula C = AT
3
 due to anharmonic approximations, which 

corresponds to the lattice contribution to heat capacity. At  high temperatures of 500K 

and above, the heat capacity Cv is temperature independent demonstrating that the 

anharmonic effect on heat capacity is neglected and its value tends to the Dulong-Petit 
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limit value Cv=3NK=190J/K/Nmol for a material with five atoms in the primitive cell as 

illustrated in Figure 12. 

Figure 12 

Debye heat capacity CV (J/K/(Nmol)) of (a) AlCCr3, (b) GaCCr3 and (c) ZnCCr3 at 

various temperatures. 

 

For temperatures beyond 100 K, however, vibrational free energy decreases because 

entropy increases with temperature as illustrated in Figure 13. 
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Figure 13 

Debye vibrational free energy (J/K/(Nmol)) of (a) AlCCr3, (b) GaCCr3 and (c) ZnCCr3 at 

various temperatures. 
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CHAPTER FIVE 

SUMMARY, CONCLUSION AND RECOMMENDATIONS 

5.1 Introduction 

This chapter provides a detailed summary of the study done with the objective of 

employing first principles computational modeling using the quantum espresso program, 

which is based on density functional theory. Conclusion and recommendations on the 

study of the hexagonal phase XCCr3 (X=Al, Ga, Zn) is presented. 

5.2 Summary 

5.2.1 Electronic Structure Properties 

The primary goal of this work was to investigate the superconducting properties of 

XCCr3 (X=Al, Ga, or Zn) through the analysis of electronic structure, elastic, 

superconductivity, and thermodynamic properties. The calculated lattice constants were 

5.207Å, 5.813Å and 5.721Å for AlCCr3, GaCCr3 and ZnCCr3 respectively and are in 

good agreement with the previous available theoretical work. 

5.2.2 Elastic Properties 

 The obtained results for elastic constant showed that, the materials under study were 

mechanically stable, as defined by Born stability criterion. The relatively high values of 

the elastic constants also demonstrated the research materials' excellent resistance to 

deformation. The three compounds were ductile in nature and had comparable thermal 

properties, as this study decisively demonstrates.Debye heat capacity, Debye vibrational 

energy and Debye temperature were all thoroughly investigated using thermo_Pw code, 

with the findings tabulated. AlCCr3 has a substantially higher Debye temperature than 

GaCCr3 and ZnCCr3, which shows that it is strongly bound, much stiffer and much 

harder. 
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5.2.3 Superconductivity Properties 

DFPT was used to obtain the relation of the dispersion of the studied compound, in 

which 15 phonon modes were obtained, with three acoustic modes and twelve optical 

modes. At the center of the Brillouin zone, there are gaps and splitting between the 

longitudinal and transversal optical modes. All the materials studied had average 

electron-phonon coupling parameters of between 0.6 and 0.8, which indicates a moderate 

level of electron phonon coupling strength. The obtained superconducting transition 

temperatures of 6.82 K, 12.01 K and 8.21 K for AlCCr3, GaCCr3 and ZnCCr3 

respectively are comparable with other studies. 

5.2.4 Thermodynamic Properties 

Density functional theory and linear response theory were used to determine the 

thermodynamic properties. The phonon frequencies at the Brillouin zone centre (Γ 

point), as well as X and L points and the phonon dispersion curves with corresponding 

phonon density of states were obtained. The thermodynamic properties including the 

phonon contribution to the Helmholtz free energy ΔF, the phonon contribution to the 

internal energy ΔE, the entropy S, and the constant-volume specific heat Cv were 

determined within the harmonic approximation based on the calculated phonon density 

of states. 

5.3 Conclusion 

Engineers may design and create appropriate materials for electrical conductivity with 

the use of knowledge of electronic structure, elastic constants, superconductivity 

properties and thermodynamic properties. The findings of this work can be utilized to 

guide experimentalists in developing high temperature superconductors. 
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5.4 Recommendations for Further Research 

This research on the properties of XCCr3 (X=Al, Ga, Zn) recommends the following; 

i. This work investigated only hexagonal structure where only five atoms were used 

and displaced within the cell. Thus, there is need for multi-atom structures to be 

studied. 

ii. Optical properties of antiperovskites materials are significant properties that 

could be investigated for more interesting applications. 

iii. Further studies based on pressure induced phase transition will be significant for 

determination of the superconducting transition temperature of other phases. 
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APPENDICES 

Appendix I: Input File for Pwscf Code AlCCr3 Structure 

&control 

calculation = 'scf', 

prefix = 'x', 

restart_mode = 'from_scratch', 

outdir = './' 

pseudo_dir = './' 

verbosity = 'high' 

wf_collect =.true. 

etot_conv_thr=1.0D-44 

forc_conv_thr= 1.0D-3 

 / 

&system 

ibrav =  4, 

celldm(1) = 5.2, 

celldm(3) = 4.47, 

nat =  8, 

ntyp = 3, 

ecutwfc = 32 

ecutrho = 650 

input_dft = 'BLYP', 

occupations= 'smearing' 

smearing  = 'gaussian', 

degauss = 0.01 

 / 

&electrons 

electron_maxstep = 100 

mixing_mode='plain' 

mixing_beta = 0.7 

diagonalization='david' 

conv_thr = 1.0d-10    

 / 



75 
 

ATOMIC_SPECIES 

 Cr   51.9961   Cr.pbe-spn-kjpaw_psl.1.0.0.UPF 

 Al   26.98     Al.pbe-n-kjpaw_psl.1.0.0.UPF 

 C    12.0107   C.pbe-n-kjpaw_psl.1.0.0.UPF 

ATOMIC_POSITIONS (crystal) 

  Cr       0.666667000   0.333334000   0.913761657 

  Cr       0.333333000   0.666666000   0.413761657 

  Cr       0.333333000   0.666666000   0.086238343 

  Cr       0.666667000   0.333334000   0.586238343 

  Al       0.666667000   0.333334000   0.250000000 

  Al       0.333333000   0.666666000   0.750000000 

   C       -0.000000000  -0.000000000  -0.000000000 

   C       -0.000000000   0.000000000   0.500000000 

K_POINTS (automatic) 

 18 18 4 1 1 1 
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Appendix II: Input File for Pwscf Code GaCCr3 Structure 

&control 

calculation = 'scf', 

prefix = 'x', 

restart_mode = 'from_scratch', 

outdir = './' 

pseudo_dir = './' 

verbosity = 'high' 

wf_collect =.true. 

etot_conv_thr=1.0D-5 

forc_conv_thr= 1.0D-4 

 / 

&system 

ibrav =  4, 

celldm(1) = 5.8, 

celldm(3) = 4.4, 

nat =  8, 

ntyp = 3, 

ecutwfc = 38 

ecutrho = 720 

input_dft = 'BLYP', 

occupations= 'smearing' 

smearing  = 'gaussian', 

degauss = 0.01 

 / 

&electrons 

electron_maxstep = 100 

mixing_mode='plain' 

mixing_beta = 0.3 

diagonalization='david' 

conv_thr = 1.0d-8 

 / 

ATOMIC_SPECIES 
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 Cr   51.9961   Cr.pbe-spn-kjpaw_psl.1.0.0.UPF 

Ga   69.72     Ga.pbe-dn-kjpaw_psl.1.0.0.UPF 

 C    12.0107   C.pbe-n-kjpaw_psl.1.0.0.UPF 

ATOMIC_POSITIONS (crystal) 

  Cr       0.666667000   0.333334000   0.913761657 

  Cr       0.333333000   0.666666000   0.413761657 

  Cr       0.333333000   0.666666000   0.086238343 

  Cr       0.666667000   0.333334000   0.586238343 

Ga       0.666667000   0.333334000   0.250000000 

Ga       0.333333000   0.666666000   0.750000000 

   C       -0.000000000  -0.000000000  -0.000000000 

   C       -0.000000000   0.000000000   0.500000000 

K_POINTS (automatic) 

 22 22 4 1 1 1 

 

 

 

 

 

 

 

 

 

  



78 
 

Appendix III: Input File for Pwscf Code ZnCCr3 Structure 

&control 

calculation = 'scf', 

prefix = 'x', 

restart_mode = 'from_scratch', 

outdir = './' 

pseudo_dir = './' 

verbosity = 'high' 

wf_collect =.true. 

etot_conv_thr=1.0D-4 

forc_conv_thr= 1.0D-3 

 / 

&system 

ibrav =  4, 

celldm(1) = 5.7, 

celldm(3) = 4.6, 

nat =  8, 

ntyp = 3, 

ecutwfc = 35 

ecutrho = 720 

input_dft = 'BLYP', 

occupations= 'smearing' 

smearing  = 'gaussian', 

degauss = 0.01 

 / 

&electrons 

electron_maxstep = 100 

mixing_mode='plain' 

mixing_beta = 0.4 

diagonalization='david' 

conv_thr = 1.0d-12    

 / 

ATOMIC_SPECIES 



79 
 

 Cr   51.9961   Cr.pbe-spn-kjpaw_psl.1.0.0.UPF 

 Zn   65.39     Zn.pbe-dnl-kjpaw_psl.1.0.0.UPF 

 C    12.0107   C.pbe-n-kjpaw_psl.1.0.0.UPF 

ATOMIC_POSITIONS (crystal) 

  Cr       0.666667000   0.333334000   0.913761657 

  Cr       0.333333000   0.666666000   0.413761657 

  Cr       0.333333000   0.666666000   0.086238343 

  Cr       0.666667000   0.333334000   0.586238343 

  Zn       0.666667000   0.333334000   0.250000000 

  Zn       0.333333000   0.666666000   0.750000000 

   C       -0.000000000  -0.000000000  -0.000000000 

   C       -0.000000000   0.000000000   0.500000000 

K_POINTS (automatic) 

 18 18 4 1 1 1 
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Appendix IV: Output File for AlCCr3 Structure 

     Elastic constant     1    1 

strain       stress (kbar) 

     -0.0075000000  -1168.5141954263 

     -0.0025000000  -1181.8610573920 

0.0025000000  -1193.3371441526 

0.0075000000  -1205.2374727655 

     Polynomial coefficients 

     a1= -0.807375053856E-02 

     a2= -0.165386457440E-01 

     a3=  0.983333551925E-01 

                    ---------------------------------------- 

     Elastic constant     2    1 

 

strain       stress (kbar) 

     -0.0075000000  -1189.8557034752 

     -0.0025000000  -1189.4008323065 

0.0025000000  -1187.4855525722 

0.0075000000  -1185.8187780236 

 

     Polynomial coefficients 

     a1= -0.807938887165E-02 

     a2=  0.190694414718E-02 

     a3=  0.823835311502E-01 

 

                    ---------------------------------------- 

 

     Elastic constant     3    1 

 

strain       stress (kbar) 

     -0.0075000000  -1221.7079101057 

     -0.0025000000  -1220.8019618687 

0.0025000000  -1219.5485199763 
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0.0075000000  -1218.5299124508 

 

     Polynomial coefficients 

     a1= -0.829463195720E-02 

     a2=  0.146663008000E-02 

     a3=  0.765842405645E-02 

 

                    ---------------------------------------- 

 

     Elastic constant     3    3 

 

strain       stress (kbar) 

     -0.0075000000  -1205.8022535485 

     -0.0025000000  -1215.9761845493 

0.0025000000  -1225.0276153553 

0.0075000000  -1234.7773681235 

 

     Polynomial coefficients 

     a1= -0.829698489447E-02 

     a2= -0.130487392390E-01 

     a3=  0.288350550108E-01 

 

                    ---------------------------------------- 

 

     Elastic constant     5    5 

 

strain       stress (kbar) 

     -0.0075000000     17.3536951343 

     -0.0025000000      6.2252691413 

      0.0025000000     -6.2252764667 

      0.0075000000    -17.3536238260 

 

     Polynomial coefficients 

     a1= -0.583073511685E-10 



82 
 

     a2= -0.158488779691E-01 

     a3=  0.534540739742E-05 

 

                    ---------------------------------------- 

 

     Elastic constants C_ij (kbar) 

i j=        1           2           3           4           5           6 

1  2432.91838  -280.52112  -215.74870     0.00000     0.00000     0.00000 

2  -280.52112  2432.91838  -215.74870     0.00000     0.00000     0.00000 

3  -215.74870  -215.74870  1919.53549     0.00000     0.00000     0.00000 

    4     0.00000     0.00000     0.00000  1165.72502     0.00000     0.00000 

    5     0.00000     0.00000     0.00000     0.00000  1165.72502     0.00000 

    6     0.00000     0.00000     0.00000     0.00000     0.00000  1356.71975 

 

     1 bar = 10^5 Pa; 10 kbar = 1 GPa; 1 atm = 1.01325 bar; 1 Pa = 1 N/m^2 

     1 Pa = 10 dyn/cm^2; 1 Mbar = 10^11 Pa 

     1 torr = 1 mm Hg = 1/760 bar = 7.5006 x 10^-3 Pa 

 

                    ---------------------------------------- 

     Elastic compliances  S_ij (1/Mbar) 

i j=        1           2           3           4           5           6 

    1     0.42192     0.05339     0.05342     0.00000     0.00000     0.00000 

    2     0.05339     0.42192     0.05342     0.00000     0.00000     0.00000 

    3     0.05342     0.05342     0.53297     0.00000     0.00000     0.00000 

    4     0.00000     0.00000     0.00000     0.85784     0.00000     0.00000 

    5     0.00000     0.00000     0.00000     0.00000     0.85784     0.00000 

    6     0.00000     0.00000     0.00000     0.00000     0.00000     0.73707 

 

     1/Mbar = 1/10^{11} Pa; 1 Pa = 1 N/m^2 

                    ---------------------------------------- 

     Voigt approximation: 

     Bulk modulus  B =    595.70391 kbar 

     Young modulus E =   2193.51316 kbar 

     Shear modulus G =   1237.46001 kbar 



83 
 

     Poisson Ratio n =     0.11370 

 

Reuss approximation: 

     Bulk modulus  B =    589.17933 kbar 

     Young modulus E =   2172.76575 kbar 

     Shear modulus G =   1227.03906 kbar 

     Poisson Ratio n =     -0.11463 

 

     Voigt-Reuss-Hill average of the two approximations: 

     Bulk modulus  B =    592.44162 kbar 

     Young modulus E =   2183.13945 kbar 

     Shear modulus G =   1232.24953 kbar 

     Poisson Ratio n =      0.11417 

 

     Voigt-Reuss-Hill average; sound velocities: 

 

     Compressional V_P =     6790.410 m/s 

     Bulk          V_B =     3495.724 m/s 

     Shear         V_G =     5041.546 m/s 

 

     The approximate Debye temperature is      719.587 K 

                    ---------------------------------------- 

     Average Debye sound velocity =     5416.127 m/s 

     Debye temperature =      718.557 K 

 

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

++++++++++++++++++ 

     Computing the thermodynamic properties from elastic constants 

     Writing on file therm_files/output_therm.dat_debye.g1 

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

++++++++++++++++++ 

     THERMO_PW    :      2h39m CPU      2h53m WALL 

 

   This run was terminated on:   1:16:27 31Dec2022             
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Appendix V: Output File for GaCCr3 Structure 

     Elastic constant     1    1 

strain       stress (kbar) 

     -0.0075000000   -318.0726532137 

     -0.0025000000   -328.1437649953 

      0.0025000000   -337.5442132438 

      0.0075000000   -346.5876640142 

 

     Polynomial coefficients 

     a1= -0.226306444842E-02 

     a2= -0.129085273492E-01 

     a3=  0.698589873832E-01 

 

                    ---------------------------------------- 

 

     Elastic constant     2    1 

 

strain       stress (kbar) 

     -0.0075000000   -330.8202240278 

     -0.0025000000   -332.0996842507 

      0.0025000000   -333.5330010646 

      0.0075000000   -334.9606834341 

     Polynomial coefficients 

     a1= -0.226237691828E-02 

     a2= -0.188364636757E-02 

     a3= -0.100759384210E-01 

 

                    ---------------------------------------- 

     Elastic constant     3    1 

strain       stress (kbar) 

     -0.0075000000   -377.7118751080 

     -0.0025000000   -379.3916237811 

      0.0025000000   -380.6994144552 

      0.0075000000   -382.0826077603 
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     Polynomial coefficients 

     a1= -0.258362335927E-02 

     a2= -0.196050213598E-02 

     a3=  0.201594275561E-01 

 

                    ---------------------------------------- 

 

     Elastic constant     3    3 

 

strain       stress (kbar) 

     -0.0075000000   -366.0953021389 

     -0.0025000000   -375.3890607145 

      0.0025000000   -384.1622994356 

      0.0075000000   -392.8429676847 

 

     Polynomial coefficients 

     a1= -0.258192351551E-02 

     a2= -0.121024034085E-01 

     a3=  0.416770403042E-01 

                    ---------------------------------------- 

     Elastic constant     5    5 

 

strain       stress (kbar) 

     -0.0075000000      9.6343451669 

     -0.0025000000      3.2149049905 

      0.0025000000     -3.2149748440 

      0.0075000000     -9.6343633687 

 

     Polynomial coefficients 

     a1= -0.259372073048E-09 

     a2= -0.873335125974E-02 

     a3=  0.351120882762E-05 
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                    ---------------------------------------- 

 

     Elastic constants C_ij (kbar) 

i j=        1           2           3           4           5           6 

    1 1898.90961   277.09390   288.39977     0.00000     0.00000     0.00000 

    2   277.09390  1898.90961   288.39977     0.00000     0.00000     0.00000 

    3   288.39977   288.39977  1780.32471     0.00000     0.00000     0.00000 

    4     0.00000     0.00000     0.00000   642.36005     0.00000     0.00000 

    5     0.00000     0.00000     0.00000     0.00000   642.36005     0.00000 

    6     0.00000     0.00000     0.00000     0.00000     0.00000   810.90786 

 

     1 bar = 10^5 Pa; 10 kbar = 1 GPa; 1 atm = 1.01325 bar; 1 Pa = 1 N/m^2 

     1 Pa = 10 dyn/cm^2; 1 Mbar = 10^11 Pa 

     1 torr = 1 mm Hg = 1/760 bar = 7.5006 x 10^-3 Pa 

 

                    ---------------------------------------- 

     Elastic compliances  S_ij (1/Mbar) 

i j=        1           2           3           4           5           6 

    1     0.54838    -0.06821    -0.07779     0.00000     0.00000     0.00000 

    2    -0.06821     0.54838    -0.07779     0.00000     0.00000     0.00000 

    3    -0.07779    -0.07779     0.58690     0.00000     0.00000     0.00000 

    4     0.00000     0.00000     0.00000     1.55676     0.00000     0.00000 

    5     0.00000     0.00000     0.00000     0.00000     1.55676     0.00000 

    6     0.00000     0.00000     0.00000     0.00000     0.00000     1.23319 

 

     1/Mbar = 1/10^{11} Pa; 1 Pa = 1 N/m^2 

                    ---------------------------------------- 

     Voigt approximation: 

     Bulk modulus  B =    809.54787 kbar 

     Young modulus E =   1691.08411 kbar 

     Shear modulus G =    734.07563 kbar 

     Poisson Ratio n =      0.15185 

Reuss approximation: 

     Bulk modulus  B =    808.98983 kbar 
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     Young modulus E =   1675.95025 kbar 

     Shear modulus G =    725.69321 kbar 

     Poisson Ratio n =      0.15472 

 

     Voigt-Reuss-Hill average of the two approximations: 

     Bulk modulus  B =    809.26885 kbar 

     Young modulus E =   1683.51718 kbar 

     Shear modulus G =    729.88442 kbar 

     Poisson Ratio n =      0.15328 

 

     Voigt-Reuss-Hill average; sound velocities: 

 

     Compressional V_P =     5340.797 m/s 

     Bulk          V_B =     3598.687 m/s 

     Shear         V_G =     3417.627 m/s 

 

     The approximate Debye temperature is      483.799 K 

                    ---------------------------------------- 

     Average Debye sound velocity =     3750.006 m/s 

 

     Debye temperature =      483.170 K 

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

++++++++++++++++++ 

     Computing the thermodynamic properties from elastic constants 

     Writing on file therm_files/output_therm.dat_debye.g1 

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

++++++++++++++++++ 

 

     THERMO_PW    :     12h58m CPU     13h50m WALL 

 

   This run was terminated on:  12: 2:31 31Dec2022        
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Appendix VI: Output File for ZnCCr3 Structure 

        Elastic constant     1    1 

strain       stress (kbar) 

     -0.0075000000   -650.5842944556 

     -0.0025000000   -660.3687937512 

      0.0025000000   -669.6720626358 

      0.0075000000   -678.7243795885 

 

     Polynomial coefficients 

     a1= -0.452102882547E-02 

     a2= -0.127423935104E-01 

     a3=  0.497727523906E-01 

 

                    ---------------------------------------- 

     Elastic constant     2    1 

 

strain       stress (kbar) 

     -0.0075000000   -666.6818814222 

     -0.0025000000   -665.5031579448 

      0.0025000000   -664.3743794025 

      0.0075000000   -663.4501387469 

     Polynomial coefficients 

     a1= -0.452005451433E-02 

     a2=  0.147160226963E-02 

     a3= -0.172993935239E-01 

                    ---------------------------------------- 

 

     Elastic constant     3    1 

strain       stress (kbar) 

     -0.0075000000   -707.8744543373 

     -0.0025000000   -707.3401555012 

      0.0025000000   -706.7007118764 

      0.0075000000   -706.3056486987 

     Polynomial coefficients 
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     a1= -0.480616887147E-02 

     a2=  0.726808548690E-03 

     a3= -0.946504927483E-02 

 

                    ---------------------------------------- 

     Elastic constant     3    3 

 

strain       stress (kbar) 

     -0.0075000000   -698.5554848677 

     -0.0025000000   -704.3452954663 

      0.0025000000   -709.9239152904 

      0.0075000000   -714.2937360746 

 

     Polynomial coefficients 

     a1= -0.480760745754E-02 

     a2= -0.717764237225E-02 

     a3=  0.965289618233E-01 

 

                    ---------------------------------------- 

     Elastic constant     5    5 

 

strain       stress (kbar) 

     -0.0075000000     10.9969248336 

     -0.0025000000      4.3265864233 

      0.0025000000     -4.3265858639 

      0.0075000000    -10.9969579249 

 

     Polynomial coefficients 

     a1=  0.161983104579E-10 

     a2= -0.101471456655E-01 

     a3= -0.228752767355E-05 

 

                    ---------------------------------------- 

     Elastic constants C_ij (kbar) 



90 
 

i j=        1           2           3           4           5           6 

1  1874.47049  -216.48013  -106.91721     0.00000     0.00000     0.00000 

2  -216.48013  1874.47049  -106.91721     0.00000     0.00000     0.00000 

3  -106.91721  -106.91721  1055.86747     0.00000     0.00000     0.00000 

    4     0.00000     0.00000     0.00000   746.34821     0.00000     0.00000 

    5     0.00000     0.00000     0.00000     0.00000   746.34821     0.00000 

    6     0.00000     0.00000     0.00000     0.00000     0.00000  1045.47531 

 

     1 bar = 10^5 Pa; 10 kbar = 1 GPa; 1 atm = 1.01325 bar; 1 Pa = 1 N/m^2 

     1 Pa = 10 dyn/cm^2; 1 Mbar = 10^11 Pa 

     1 torr = 1 mm Hg = 1/760 bar = 7.5006 x 10^-3 Pa 

 

                    ---------------------------------------- 

     Elastic compliances  S_ij (1/Mbar) 

i j=        1           2           3           4           5           6 

    1     0.54469     0.06643     0.06188     0.00000     0.00000     0.00000 

    2     0.06643     0.54469     0.06188     0.00000     0.00000     0.00000 

    3     0.06188     0.06188     0.95962     0.00000     0.00000     0.00000 

    4     0.00000     0.00000     0.00000     1.33986     0.00000     0.00000 

    5     0.00000     0.00000     0.00000     0.00000     1.33986     0.00000 

    6     0.00000     0.00000     0.00000     0.00000     0.00000     0.95650 

 

     1/Mbar = 1/10^{11} Pa; 1 Pa = 1 N/m^2 

 

                    ---------------------------------------- 

 

     Voigt approximation: 

     Bulk modulus  B =    438.24215 kbar 

     Young modulus E =   1556.04682 kbar 

     Shear modulus G =    856.64254 kbar 

     Poisson Ratio n =     0.09178 

 

Reuss approximation: 

     Bulk modulus  B =    411.62575 kbar 
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     Young modulus E =   1475.85577 kbar 

     Shear modulus G =    817.71373 kbar 

     Poisson Ratio n =      0.09757 

 

     Voigt-Reuss-Hill average of the two approximations: 

     Bulk modulus  B =    424.93395 kbar 

     Young modulus E =   1515.95130 kbar 

     Shear modulus G =    837.17814 kbar 

     Poisson Ratio n =      0.09461 

 

     Voigt-Reuss-Hill average; sound velocities: 

 

     Compressional V_P =     5001.938 m/s 

     Bulk          V_B =     2626.477 m/s 

     Shear         V_G =     3686.564 m/s 

 

     The approximate Debye temperature is      513.282 K 

 

                    ---------------------------------------- 

     Average Debye sound velocity =     3940.871 m/s 

 

     Debye temperature =      509.329 K 

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

++++++++++++++++++ 

     Computing the thermodynamic properties from elastic constants 

     Writing on file therm_files/output_therm.dat_debye.g1 

  

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

++++++++++++++++++ 

     THERMO_PW    :      8h50m CPU      9h25m WALL 

 

   This run was terminated on:  16:32:50 10 Jan2023        
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