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ABSTRACT 

Missing observations is a common occurrence in data collection. To solve this problem, 

researchers have developed missing value imputation techniques for some linear and 

nonlinear time series models with normal and stable innovations using estimating function 

criterion. This criterion does not take into consideration the distribution of the innovation 

sequence of the time series model. Therefore the aim of this study was to develop explicit 

optimal linear estimators of missing values for several classes of bilinear models whose 

innovation sequences are governed by the normal, student-t and generalized autoregressive 

heteroscedasticity using the minimum dispersion error criterion. For comparison purposes, 

estimates based on artificial neural networks and exponential smoothing were also obtained. 

Data was generated using the R statistical software. 100 samples of size 500 each were 

simulated for different bilinear time series models. In each sample, artificial missing 

observations were created randomly at points 48, 293 and 496 and estimated. The mean 

squared error was used to measure the efficiency of the estimates. The study found that the 

efficiency of the estimates was correlated with the probability distribution of the innovation 

sequence. Optimal linear estimates were the most efficient estimates when the models had 

normal and student-t innovations. However, for bilinear models with generalized 

autoregressive heteroscedasticity innovations, the artificial neural network estimates were the 

most efficient. The study recommends the use of optimal linear estimates for bilinear models 

with either normal or student-t errors. When the data is bilinear with generalized 

autoregressive heteroscedasticity errors, artificial neural network estimates are preferred. 

These findings can be used by econometricians in developing more accurate models. 

Key Words:  Neural Networks, Exponential Smoothing, Optimal Linear Estimates 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background to the study 

A time series is defined as data recorded sequentially over a specified time period.  There are 

cases where all the data within the specified period are obtained resulting in a complete data 

set. This data is collected at equally spaced time steps and can be analyzed easily since 

techniques developed for complete and regular series are available (Musial, 2011). Further, 

inferences can be made that can preserve the statistical facts of the system (Campozan, et. al., 

2014). However, data analysts are frequently faced with situations where one or several time 

series observations are missing at certain points within the data set collected for modeling 

(Pigott, 2001). This leads to missing values at such points. 

 

 Missing values may occur for various reasons which may include poor record keeping, lost 

records, technical errors, non-responses at the time of data collection, deletion of suspected 

outliers that were collected by mistake and also because the time series data was originally 

acquired at irregular times (Pigot, 2000; Fung, 2006). In addition, a peculiar case can arise 

when one might be interested in determining the likely value of a variable of interest at a 

time that may not coincide with a particular measurement or observation (Musial, 2011). 

Being unable to account for missing value(s) may lead to a severe misrepresentation of the 

phenomenon under study. In addition, the results of the analysis may be characterized by 

poor estimates and forecasts of time series (Abraham and Thavaneswaran, 1991). Ng and 

Panu (2010) also states that an incomplete data set may lead to complications and uncertainty 
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in the analysis of the data. Ferreiro (1987) observed that the occurrence of missing 

observations is quite common in time series and in many cases it is necessary to estimate 

them. Hence it is imperative to find a solution to the missing value problem. Different 

suggestions have been made for dealing with missing values for different types of data. 

1.2 Missing value imputation 

Gupta (1996) suggests that one of the possible ways of dealing with missing values in 

multivariate data is to delete the incomplete cases from the dataset. This approach may lead 

to loss of valuable information. The other approach is to compute the missing value(s) using 

the rest of information in the dataset (Gupta and Lam, 1996). This approach is referred to as 

imputation. Imputation is defined as a procedure that is used to fill in missing values by using 

substitutes. It can also be defined as a statistical technique that is used to estimate missing 

values in an irregular time series (Fung, 2006; Owili, Nassiuma and Orawo, 2015a).  

According to Abrahantes, et. al. (2011), imputation broadly comprises several techniques that 

have been developed to compute missing values. These techniques may employ basic and 

simple strategies such as mean substitution and neural networks approach (Denk and Weber, 

2011). It may also involve the use of appropriate statistical prediction or forecasting models 

such as regression or time series models. More advanced modeling methods such as those 

based on Markov chain and Monte Carlo methods can also be used.  

Imputation may also require the analysis of a similar and comparable record to the dataset 

with missing value(s) or use of skilled knowledge or experience (Sa¨rndal and Lundstro¨m, 

2005). This is because for any incomplete dataset, the collected data values are deemed to 
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provide indirect evidence about the expected values of the unobserved ones. This evidence 

can be combined with certain assumption to imply a predictive probability distribution for 

the missing value (Schafer and Olsen, 1998). Generally, the aim of missing data imputation 

approach is to compute a reasonable substitute for a missing observation and use the new 

complete dataset to carry out the desired modeling or analysis (McKnight, et. al., 2007). 

Several factors should be considered in identifying an appropriate imputation method for a 

given data. Kaiser (2012) suggests the consideration of the structure of the data. He states 

that the commonly used method for missing values imputation in non continuous data is to 

substitute missing values of each attribute by its arithmetic average. For time series data and 

especially nonlinear time series models, advanced statistical methods may be required.  

Complications do arise in the imputation of missing values due to various factors. These may 

include the number of missing patterns or observations and the nature of the data. That is, if 

categorical and continuous random variables are involved (Horton and Ken, 2007). However, 

routines, procedures, or packages capable of generating imputations for incomplete data in 

databases are now widely available. For databases one can use regression, correlation 

analysis and other non-parametric methods in computing the missing value. This does not 

apply to time series data especially when one takes into account innovation sequence. 

Researchers have varied reasons for computing missing values. There are cases where they 

impute missing values so that they can use them to evaluate the accuracy of the estimates of 

the parameters of the model fitted after filling in the missing observations. However, in some 

situations, they could be interested in determining the quality of the imputed values at the 

level of the individual. In this case, no further analysis is done with the data after imputing 
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the missing value. This is an issue that has not received much attention (Cortiñas, et. al., 

2011). This study was concerned with the finding the accuracy of imputed value(s) at the 

specific points where they occurred in contrast to finding parameter estimates of the resulting 

model after the infilling of the missing value(s). 

Several criteria may be used in the derivation of missing value(s) in nonlinear time series 

models. Abraham and Thavaneswaran (1991) used estimating function criterion. They 

developed an estimator for missing value for only a particular order of the simple bilinear 

time series model, BL (1, 0, 2, 0). This is a unique type of bilinear time series model where 

the lagged errors of the bilinear term do not include the innovation sequence. The other 

possible criteria that may be employed are the least squares method and maximum likelihood 

function. This study used a different criterion from estimating functions. Estimates were 

derived by minimizing the dispersion error. The estimates obtained are referred to as optimal 

linear estimates. This criterion has not been used before for estimating missing values for 

bilinear time series models.   

1.3 Statement of the problem 

Missing observations is a common occurrence facing data analysts and researchers involved 

in statistical modeling in diverse fields. To solve this problem, missing value imputation 

techniques have been developed for several linear and nonlinear time series models. 

Unfortunately these techniques are only appropriate for the autoregressive moving average 

(ARMA) models whose innovation sequences follow either the normal or infinite variance 

stable distributions. A bilinear time series model is a class of nonlinear time series which has 

ARMA models as its special case. As far as bilinear time series models is concerned, an 
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estimator for missing values was developed for only a particular order of the simple bilinear 

time series, BL (1 ,0 ,2 ,0). Thus for several classes of bilinear time series models, there is no 

explicit method for estimating missing values. Further, the estimation of the missing value 

for BL (1, 0, 2, 0) was based on the estimating functions criterion which does not consider 

the distribution of the innovation sequence of models. Therefore, this study sought to fill 

these gaps by developing explicit methods for estimating missing values for different classes 

of bilinear time series models whose innovations follow the normal, student-t and 

generalized autoregressive heteroscedasticity probability distributions by minimizing the 

dispersion error. Pure bilinear and the general bilinear time series models were the main 

classes of bilinear time series considered. For comparison purposes, estimates of missing 

values for bilinear time series were also obtained using two commonly used nonparametric 

methods of artificial neural networks (ANN) and exponential smoothing (EXP). 

1.4 Objectives of the study 

The general and specific objectives of the study are given below. 

1.4.1 General objective  

The purpose of the study was to develop estimators of missing observations of bilinear time 

series models with different innovation sequence by minimizing the dispersion error. 

1.4.2 Specific objectives 

The specific objectives of the study were to: 
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a) Derive estimators for missing observations for bilinear time series models using 

linear interpolation technique when the innovations are identically and independently 

distributed normal sequences by minimizing dispersion error. 

b) Derive estimators for missing observations for bilinear time series models when the 

innovations have independent and identical student-t distribution using linear 

interpolation techniques by minimizing dispersion error. 

c) Derive estimators for missing values for bilinear time series models with GARCH 

errors using linear interpolation techniques by minimizing dispersion error. 

d)  Estimate missing values for bilinear time series models using non-parametric 

methods of artificial neural networks (ANN) and exponential smoothing (EXP) 

techniques. 

e) Compare the efficiency of the estimates obtained and determine how they vary with 

the position of the missing data point. 

1.5 Significance of the study 

Time series models, among them bilinear time series models, are widely used in decision 

making especially in economics, environment and finance for prediction and forecasting 

purposes. These models play a key role in budgeting, forecasting and enhancing the 

understanding of the mechanisms generating data. For accurate and reliable results, the 

models constructed must be based on all the data that is supposed to be collected, be it 

sample or census data. This study has shown that efficient estimates of missing values can be 

obtained using optimal linear interpolation technique for bilinear time series models with 

normally and t-distributed innovation. The artificial neural networks can be used to estimate 
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missing values for bilinear time series models with GARCH innovations. It is also evident 

that the estimation of missing values depends on the distribution of innovation sequence of 

the data. These findings are of benefit to researchers, university lecturers, data analysts and 

planners in the Government who are involved in modeling financial, economic and 

seismology data that can be modeled using bilinear time series models. 

1.6 Limitations of the study 

 The study used the Time Series Model (TSM) software that is usually used for the analysis of 

time series data. However, it cannot model higher order pure diagonal bilinear models and 

hence only simple pure diagonal models were studied. 

1.7 Scope of the study 

The study focused on estimating missing values for bilinear time series only. While several 

methods for estimating missing values exist, the study used only two other methods of 

missing values imputations namely, artificial neural networks and exponential smoothing.  

1.8 Assumptions of the study 

The models used were assumed to be stationary bilinear time series and that the higher order 

moments were deemed insignificant. The innovation sequence was assumed to be 

independent and identically distributed (i.i.d) random variables when the models had the 

normal or the student-t distribution. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Introduction 

In this chapter, we first review the literature on nonlinear time series models, then review one 

on imputation of missing values for different types of time series data, namely: cross-

sectional time series, micro-array time series and spatial-temporal time series. We also 

examined imputation methods used for linear and nonlinear time series models. Imputation 

methods used for nonparametric methods are also discussed.  

2.2 Nonlinear time series models 

Most of the real-life time series encountered in practice are adequately described by 

nonlinear models. Nonlinear models are appropriate for data that exhibits time irreversibility, 

outlying points and cyclicity. According to Nassiuma (1994), nonlinearity can be approached 

in two different ways; in the first case, nonlinearity is introduced in the structure of model 

but it is assumed that the distribution of the innovation sequence is Gaussian. Bilinear time 

series models by Subba Rao and Silva (1992), threshold autoregressive models by Tong 

(1983), exponential models by Haggan and Ozaki (1981), random coefficient autoregressive 

(RCA) models by Nicolls and Quinn (1982), state dependent models by Priestly (1980) and 

several of their modifications are good examples of models that fall in this category. 

The second case is to assume that the process is still linear but the innovation sequence is 

non-Gaussian. In this category, we have finite and infinite variance time series models. Finite 
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variance non-Gaussian processes include the gamma and exponential autoregressive 

processes (Gaver and Lewis, 1980; Jacobs and Lewis, 1977 and Lawrence and Lewis, 1980). 

A more complicated case involves models that consist of a blend of non-Gaussian and 

nonlinearity. A classic example is the bilinear models with infinite variance innovations (Liu, 

1989). The important nonlinear time series models used in this study are described below. 

2.2.1 ARCH models 

A process }{ t  is an autoregressive heteroscedastic ARCH (q) model if the conditional 

distribution of }{ t  given the available information 1t  is expressed as  

),0(~/ 1 ttt hN  

where 

  

,2/1

ttt h  2

1

0 it

q

i

ith 



   

The parameters of this model satisfy the conditions: 0i for all i=0 1,2,3..., 1
1




i

q

i

  and  

t is a sequence of independent and identically distributed (i.i.d) random variables with mean 

zero and unit variance (Engle, 1982). An important property of these models is that they can 

describe the time varying stochastic conditional volatility (Islam, 2013). This can be used to 

improve the reliability of forecasts and to help in understanding the process. It is important to 

realize that the series }{ t  is a martingale difference and hence cannot be predicted. 

However, the squared series 2

t  can be forecasted with the best forecast given as 
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1

0 iti
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  . 

These models include lagged variances in the prediction of future variances as indicated in 

Engle (2004), and thus  can be used in the measurement and forecasting of the time varying 

volatility of returns and financial assets observed at high sampling frequencies such as daily 

returns (Andersen, Bollerslev, Diebold and Labys, 2003). Further, they specifically take the 

dependence of the conditional second moments when modeling into consideration. This 

accommodates the increasingly important demand to explain and to model risk and 

uncertainty in financial time series (Degiannakis and Xekalaki, 2004; Engle, 2004; Fan and 

Yao, 2003). 

 Despite their importance in modeling financial data, the ARCH models have a relatively 

long lag length in the variance equation (Wagalla, et al., 2012). This implies that they contain 

many parameters that have to be estimated and hence it is not a parsimonious model. 

Bollerslev (1986)   developed a more parsimonious model called the Generalized ARCH 

(GARCH) model. It uses a few number of parameters than ARCH model for modeling a 

given time series data. For the GARCH (p, q) models, the conditional variance is specified as 

ptptqtqtt hhh    ...11110  

with the inequality conditions 00  ,  0i   for i=1,…,q,  0i , for i=1,…,p. This 

ensures that the conditional variance is strictly positive.  
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2.2.2 ARMA models with ARCH errors 

The ARMA model can be combined with an ARCH model to obtain an ARMA (k, l) process 

whose innovations }{ t are ARCH (q). The ARMA (k, l) model with ARCH error is given by  
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where }{ t is ARCH (q) (Weiss,1984). The above model is basically an ARMA model and 

much of the theory of Box-Jenkins identification and estimation approach can be applied to 

it.  

2.2.3 Bilinear time series models 

A discrete time series process tX  is said to be a bilinear time series model BL (p, q, m, k) if 

it satisfies the difference equation 
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where ,  and ijB  are constants while te  is a purely random process and o =1 (Granger and 

Andersen, 1978a; Subba Rao,1981). For example, the bilinear model BL (1, 1, 1, 1), is 

expressed as 

tttttt eexbexx   111111 
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Subba Rao (1984) showed that with a large bilinear coefficient ijb , a bilinear model can have 

sudden large amplitude burst that can be suitable for some kind of seismological data such as 

earthquake and underground nuclear explosion data. A bilinear process is also time 

dependent. This feature enables bilinear processes to be used in modeling financial data 

(Maravall, 1983). Bilinear model is a member of the general class of nonlinear time series 

models referred to as ‘State dependent models’ formed by adding the bilinear term to the 

conventional autoregressive moving average (ARMA) model (Priestly, 1980). 

Bilinear time series models and its variants have been used successfully for forecast 

improvement. Wagalla, et al. (2014) modeled different time series stock data at Nairobi 

Securities Exchange (NSE) and found that bilinear models with GARCH innovations gave 

more efficient estimates. Earlier, De Gooijer (1989) reported a forecast improvement with 

bilinear models in forecasting stock prices. In a much earlier study, Maravall (1983) used a 

bilinear time series model to forecast Spanish monetary data and reported a near 10% 

improvement in one step-ahead mean square forecast error over several ARMA alternatives.  

The statistical properties of such models have been analyzed in detail by Granger and 

Andersen (1978a), Subba Rao and Gabr (1984), Hannan (1982), Liu and Brockwell (1988) 

etc., while an economic application is presented in Howitt (1988). 

2.2.4 Bilinear time series model with ARCH innovations 

According to Weiss (1984), the combined bilinear model with ARCH errors is given by 
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and 
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)(B  and )(B are the characteristic polynomials,   is the mean of the time series 

observations and  te  is the innovation sequence. A stationary bilinear model can be 

expressed in a kind of moving average with infinite order according to Wold (1954) 

decomposition theorem. This enhances its application in making inferences.  

2.3 Identification of bilinear time series models 

Given a time series data, the first step in the identification process of bilinear time series 

model  is to test whether the data can be modeled either as a linear time series or belongs to 

the broader class of nonlinear time series models. This involves testing a null hypothesis that 

the data is linear. This can be done using one of the statistical tests of linearity (Keenan, 

1985; Tsay, 1986). If the null hypothesis is rejected then the data can be appropriately 

modeled by a nonlinear series model and a bilinear model is one of the candidate models that 

may be considered (Subba Rao, 1981; Subba Rao and Gabr, 1984). If the data is nonlinear 

then the second step follows. 

 

The second step in the identification process is to determine the class of the nonlinear models 

to which the data belongs. This involves the use of moments and cumulants. It has been 

noted that BL (p, 0, p, 1) and ARMA (p, 1) models have similar second order moments and 

hence these moments cannot be conclusively used in identification of the bilinear time series 

models (Subba Rao, 1991). Consequently, it is imperative to use higher order moments of the 



 

 

14 

 

data in the identification process. The higher moments are known to satisfy the Yule-Walker 

type difference equations (Subba Rao, 1988, 1991). Thus, the Yule-Walker type difference 

equations could be used for model identification of the bilinear time series models. The 

difference between bilinear time series and other nonlinear time series models is that the 

higher order moments of a bilinear time series (including the fourth moments) decay slowly 

as the lag tends to infinity. However, the fourth moments of the other nonlinear time series 

models do not behave in this manner. 

 

 After determining that the data is bilinear, then the order of the model is determined using 

canonical correlation analysis carried between the linear combinations of the observations 

and linear combinations of higher powers of the observations. The technique of identification 

of a given nonlinear model can be extended to more general bilinear models provided there 

are difference equations for higher order moments and cumulants (Subba, Rao  and da Silva 

1992). 

For some super diagonal and diagonal bilinear time series, the third order moments are not 

equal to zero. This pattern of nonzero moments can be used to discriminate between white 

noise and the bilinear models and also between different bilinear models (Kumar, 1986). 

Using the patterns presented in a table of third order moments, one can easily distinguish 

bilinear models from pure ARMA or mixed ARMA models. Third order moments may also 

be useful in detecting non-normality in the distribution of the innovation sequence (Poti, 

Nassiuma and Orawo, 2015b).  
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2.4 Estimation of parameters of the bilinear time series models 

Several estimation techniques have been proposed in the literature. Some of them deal with 

particular classes of the bilinear time series models. Subba Rao (1981) first proposed two 

methods for the estimation of the model parameters of a bilinear time series models, namely 

the use of Newton Raphson technique and the Marquart Algorithm. He applied both methods 

to the estimation of the parameters of a bilinear time series model identified for sunspost and 

seismology data. Secondly, he proposed estimation of the parameters of bilinear models 

using maximum likelihood method. More recently Shiqing, Liang, and Fukang (2015) 

proposed a generalized autoregressive conditional heteroskedasticity-type maximum 

likelihood estimator for estimating the unknown parameters for a special bilinear model. 

They showed that their proposed estimator was consistent and asymptotically normal under 

only finite fourth moment of errors. Mathews and Moon (1991) proposed the use of 

covariance estimates based on the least squares method on the parameters of the bilinear 

model BL (p , 0, p, 1). Won, Kim, Billard and Basawa (1990) estimated the parameter of the 

simple diagonal bilinear model BL (0, 0, 1, 1) using the least squares method.  

2.5 Missing value imputation for time series cross-sectional data 

Numerous imputation techniques have been proposed in the literature (Rubin, 1996; Särndal 

and Lundström, 2005) for the imputation of missing values in time series cross-sectional data 

(TSCS). These techniques are classified according to the type of dataset used; whether a non-

parametric model is used or not, and if randomization is used or not for selection of imputed 

value. Among the first imputation methods used in TSCS was kernel density estimation in 

combination with nonparametric bootstrap (Titterington and Sedbranks, 1989). The other 
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methods used for imputing missing values include: Expected Maximum Algorithm (EM), 

Single Imputation (SI), Multiple Imputation (MI) and Artificial Neural Networks (Bishop, 

1995). 

In Single Imputation (SI) approach each missing value is replaced by single imputed value 

using, say, interpolation approach or regression analysis. The replaced value is then treated as 

if it were an actual data value. This approach enables analysis with procedures designed for 

complete datasets. This method is simple and can be applied to any dataset. Its main 

disadvantage is that it does not account for the uncertainty about the predictions of the 

imputed value. Therefore the estimated variances of the parameters are biased towards zero, 

leading to statistically invalid inferences (Rubin, 1987). This can be overcome using multiple 

imputation method.  

Multiple imputations (MI) is a methodology for estimating missing observations using a set 

of M reasonable estimates that represent the uncertainty about the right values. It has 

received considerable attention in the literature (Schafer, 1997). It maintains the flexibility 

and relative ease of application of single imputation while taking into account the variability 

due to the imputation of the missing values.  

The application of MI has focused mainly on cross-sectional models for survey data. 

However, it has also been used on panel and time series data (King, et al, 2001). Although 

from a theoretical point of view there is no reason why MI cannot be used for time series 

data, its application has been difficult in practice. With cross sectional data, discarding 

records with data missing completely at random (MCAR) has the effect of only reducing the 
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available sample. However, in a time series each record is unique and the data is also 

correlated; dropping it would leave the series with gaps, unusable for many purposes. 

These imputation techniques have also been extended to sample surveys, where the object is 

to generalize estimates obtained in the survey to a larger population. For surveys based on 

registers, random imputation for qualitative variables has been suggested (Wallgren and 

Wallgren, 2007). Also Fiedler and Schodl (2008) applied random imputation for person’s 

occupation and education in a test of a register based census. Multiple imputations in 

registers have been used by Abowd et al. (2006).   

Honaker and King (2010) developed an approach to analyzing data with missing values that 

is suitable for large numbers of variables. This characteristic is common in multivariate data 

used in comparative politics and international relations; or when qualitative knowledge exists 

about specific missing cell values. Their method greatly increased the information 

researchers are able to extract from a given data. This study was neither interested in cross-

sectional time series data nor in survey data. The study sought to obtain single estimates for 

missing values for data which is not cross-sectional. 

2.6 Estimation of missing values for micro-array time series data 

Dempster, et al. (1977) formalized the EM algorithm; a computational method for efficient 

estimation from incomplete data. Cao, et al. (2008) proposed a new method for estimating 

missing value in a micro-array data based on non-parametric regression combined with 

nearest neighbor approach, referred to as NPRA, which can capture both linear and non-

linear relations between genes and arrays. They performed a comparative study of the 
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imputation methods using different public datasets. The NPRA method produced more 

superior results than the other methods for different cases of missing value points and sizes 

of missing values. This study was also not based on micro-array time series nor did it extend 

the methods used in micro-array to bilinear time series. 

2.7 Estimation of missing values for spatio-temporal time series 

Multiple time series data that correspond to different spatial locations are referred to as the 

Spatio-temporal time series. One approach to analyzing spatial data with missing values was 

outlined by (Gomez, et al., 1995). It uses the bootstrap method to input missing natural 

resource inventory data. Yozgatligil, et al. (2012) compared several imputation methods used 

to compute the missing values of spatio–temporal meteorological time series. They assessed 

six imputation methods with respect to various statistical properties of the estimators such as 

accuracy, robustness, precision and efficiency for artificially created missing data in monthly 

total precipitation and mean temperature series obtained from the Turkish State 

Meteorological Service. These methods were classified as either simple or computational 

intensive. Simple arithmetic average, normal ratio (NR), and NR weighted with correlations 

comprised the simple ones. Multilayer perceptron type neural network and multiple 

imputation strategy adopted by Monte Carlo Markov Chain based on expectation–

maximization (EM-MCMC) were classified as computationally intensive. They concluded 

that despite the computational inefficiency of EM-MCMC methods, they seem good for the 

imputation of meteorological time series which has several cases of missing values. Further, 

they concluded that using the EM-MCMC algorithm for imputing missing values before 
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conducting any statistical analyses of meteorological data definitely decreases the amount of 

uncertainty and give more robust results. 

 A different approach from EM-MCMC that uses nonlinear and mixed integer mathematical 

programming (MINLP) models with binary variables for estimating missing values in 

precipitation data was developed and evaluated by Teegavarapu (2012). It overcomes the 

limitations associated with spatial interpolation methods relevant to the arbitrary selection of 

weighting parameters, namely the number of control points within a neighborhood and its 

size. Daily precipitation data obtained from 15 rain gauging stations were used to test and 

derive conclusions about the efficiency of these methods. The developed methods were 

compared with some other approaches namely, multiple linear regression, nonlinear least-

square optimization, kriging, global and local trend surface and thin-plate spline functions. 

The new method of mathematical programming formulation gave superior estimates than to 

those obtained from all the other spatial interpolation methods. 

Abdalla and Marwalla (2005) compared two algorithms for imputing missing values, namely 

the Expectation Maximization (EM) Algorithm and the Auto-Associative Neural Networks 

and Genetic Algorithms combination, using three datasets obtained from an industrial power 

plant, an industrial winding process and Human Immunodeficiency Virus (HIV) survey. 

Their results showed that Expectation Maximization Algorithm is appropriate and performs 

better in cases where the input variables are largely independent, whereas the auto-

associative neural network and genetic algorithm combination is suitable when the variables 

in the model have an intrinsic nonlinear relationships. 
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In a different study, Toth, et al. (2000) compared the accuracy of the short-term rainfall 

forecast using three techniques: nearest neighbors, artificial neural networks, and auto-

regressive moving average models. The performance of the nearest neighbor technique was 

investigated through a subjective trial-and-error process by varying the number of neighbors 

in the range [5, 100]. They observed that the performance of the forecast improved when the 

number of neighbors was increased; however, the improvement was insignificant when the 

numbers of neighbors were more than 20. They also found out that the results obtained by the 

nearest neighbors’ method were better than those obtained from autoregressive moving 

average models. Based on quality of the performance of the approaches, the artificial neural 

networks gave the best results followed by k-nearest neighbor’s method while autoregressive 

moving average models gave the worst results.  Among the nonparametric methods used, 

ANN performed the best. This is one of the reasons that motivated the use of ANN in this 

study to determine how it performs with bilinear time series models. 

2.8 Missing value imputation for linear time series models with finite variance 

Damsleth (1979) developed a method for imputing missing values in a time series which can 

be represented as an ARIMA time series model based on computing the optimal linear 

combination of the forward and back forecasts. Another approach based on forecasting was 

developed by Abraham (1981) who used forecasting techniques to estimate missing 

observations in time series. He used the minimum mean squared error estimate to measure 

efficiency of the estimates. Missing values for linear processes with finite variance were also 

obtained by Miller and Ferreiro (1984). This was later extended by Ferreiro (1987) who 

discussed different alternatives methods for the estimation of missing observation in 
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stationary ARIMA time series models. His article offered a series of alternatives techniques 

for estimating missing observations.  

Smoothing methods based on state space formulation have also been used to estimate 

missing values and these are described in general terms (Anderson and Moore, 1979). 

Algorithms for computing the likelihood function when there are missing data in scalar case 

have been provided by Jones (1980), and Ljung (1982, 1993) and Harvey and Pierse (1984) 

for stationary models. They showed how to predict and interpolate missing observations and 

obtain the mean squared error of the estimate. Beveridge (1992) also extended the concept of 

using minimum mean squared error linear interpolator for missing values in time series to 

handle any pattern of non-consecutive observations. He applied the method to simple ARMA 

models to discuss the usefulness of either the non-parametric or the parametric form of the 

least squares interpolator. 

State space representation has also been used for estimation of missing values in ARIMA 

models (Jones, 1985; Harvey and Pierse, 984). Harvey and Pierse (1984) further discussed 

maximum likelihood estimation of the parameters in an autoregressive integrated moving 

average (ARIMA) model when some of the observations are subject to temporal aggregation. 

They pointed that imputation problem can be solved by setting up the model in state space 

form and then applying the Kalman filter. Nieto and Martinez (1996) demonstrated a linear 

recursive technique that does not use the Kalman filter to estimate missing observations in an 

invertible ARIMA model. This procedure is based on the restricted forecasting approach, and 

the recursive linear estimators are obtained when the minimum mean-squared error is least. 
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The Kalman filter is a set of mathematical equations that recursively provides an efficient 

computational means to estimate the state of a process in a way that minimizes the mean 

squared error (Welch and Bishop, 2011). The filter is very powerful in several aspects: it 

supports estimation of past, present, and even future states, and can also do so even when the 

precise nature of the modeled system is unknown. These are concerned with finding the best 

linear estimates of the state vector tX  in terms of the observations 1Y ,
2Y  and a random vector 

.0Y
 
Recursive equations update the mean and covariance matrix and hence the distribution of 

the state vector, 1tY , after  the new observation , 1tZ , has become available. The update 

estimates 
1

ˆ
tY  of the state is the sum of projected estimates using observation at time t, and 

the one-step-ahead forecast error. 

Thus kalman filtering is a recursive updating procedure that consists of forming a 

preliminary estimate of the state and then revising the estimate by adding a correction to this 

preliminary estimate. The ease of implementation of Kalman filter algorithm has now made it 

become widely used in many applications (Kohn and Ansley, 1983).   

In practice, the kalman filter equations are more easily adapted to cope with missing values. 

When a missing observation is encountered at time t, the prediction equations are processed 

at the point based on the previous values. That is at every point in the time series, a 

prediction is made of the next value based on a few of the most recent estimates 

(Vijayakumar and  Plale,  2007). 

Pascal (2005) investigated influence of missing values on the prediction of a stationary time 

series process by applying Kaman filter fixed point smoothing algorithm. He developed 
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simple bounds for the prediction error variance and asymptotic behavior for short and long 

memory process. Fung (2006) derived recursive smoothing methods associated with Kalman 

filter to estimates missing values and their mean squared error in ARMA models.  

Pena and Tiao (1991) demonstrated that missing values in time series can be treated as 

unknown parameters and estimated by maximum likelihood method or as random variables 

and predicted by expected values. They provided examples to illustrate the difference 

between these two procedures. It is argued that the expected value is generally more suitable 

for estimating missing values in time series.  

Norazián, et al. (2008) used interpolation and mean imputation techniques for simulated 

missing values from annual hourly air pollution data. They found out that the most 

appropriate imputation method was to replace each missing value with the mean of the two 

data points adjacent to the missing value. This approach is referred to as the mean-before-

after method. 

2.9 Imputing missing values for linear time series with infinite variance 

Pourahmadi (1984) developed alternative techniques suitable for a limited set of stable cases 

with characteristic index α∈ (1, 2]. This was later extended to the ARMA stable process with 

characteristic index α∈(0,2] (Nassiuma, 1994). He developed an algorithm applicable to 

general linear and nonlinear processes by using the state space formulation and applied it to 

the estimation of missing values. 
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2.10 Missing value imputation for nonlinear time series models 

Thavaneswaran and Abraham (1987) derived a recursive estimation procedure for estimating 

model parameters based on optimal estimating function. They applied this procedure to the 

estimation of missing observations. A more general method for estimation of missing values 

was developed by Abraham and Thavaneswaran (1991). They developed a general nonlinear 

time series model which included several standard nonlinear models such as GARCH and 

bilinear time series. They offered two methods for estimating missing observations based on 

prediction algorithm which included; the fixed point smoothing algorithm and estimating 

functions equations. It was used to recursively estimate missing observations in an 

autoregressive conditional heteroscedasticity (ARCH) model and the estimation of missing 

observations in a linear time series model. Bilinear model was considered as a special case. 

However, they only considered a particular model order, BL (1, 0, 2, 0) using estimating 

function approach. No simulation was done to assess its accuracy. 

On vector time series, Luceno (1997) estimated missing values in possibly partially non-

stationary vector time series. He extended Ljung (1989) method for estimating missing 

values and evaluating the corresponding function in scalar time series. The series is assumed 

to be generated by a possibly partially non-stationary and non-invertible vector 

autoregressive moving average process. He assumed no pattern of missing values. Future and 

past values were taken as special cases of missing data that can be estimated in the same way.  
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2.11 Nonparametric methods for estimating missing values 

Nonparametric methods have also been proposed for estimating values. Titterington and Mill 

(1983) considered kernel estimation of a multivariate density for data with incomplete 

observations. When the parameter of interest is the mean of a response variable which is 

subject to missing values, Cheng (1994) proposed using the kernel conditional mean 

estimator. Hirano, et. al. (2003) studied the estimation of average treatment effects using 

non-parametrically estimated propensity scores. In survey statistics, Kim and Fuller (2004) 

proposed the fractional hot deck imputation method, in which multiple values are drawn from 

the same imputation cell as the missing observation, and a weight is assigned to each imputed 

value.  

Many other approaches have been developed to deal with missing values, such as k-nearest 

neighbor (Troyanskaya, et al., 2001), Bayesian PCA (BPCA) (Oba. et al., 2003), least square 

imputation (LSimpute) (Hellem, 2004), local least squares imputation (LLSimpute) (Kim, et 

al., 2005) and least absolute deviation imputation (LADimpute) (Cao and Poh, 2006). 

2.12 Estimating missing values using singular spectrum analysis 

 The principal component methods for multivariate data can be generalized to analyze time 

series data using a non-parametric approach called the Singular Spectrum Analysis (SSA). 

There are different SSA-based methods for filling in missing values in datasets 

(Schoellhamer, 2001; Kondrashov, et al., 2005; Golyandina and Osipov, 2006; Kondrashov, 

2006). The motivation to use SSA is because it works well with arbitrary any statistical 

processes; whether linear or nonlinear, stationary or non-stationary, Gaussian or non-
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Gaussian (Hassani, 2007). Musial, et al. (2011) compared the performance of some of the 

currently used approaches to fill gaps and smooth time series such as Smoothing Splines and 

Singular Spectrum Analysis in terms of either reconstructing the original record or in 

minimizing model selection criteria such as the Mean Absolute Error (MAE), Mean Bias 

Error (MBE) and chi-squared test statistics. They concluded that each method showed 

strengths and weaknesses, and that the choice of an approach largely depends on the 

properties of the underlying time series and the goal of the research.  

SSA approach may be integrated with other methods in estimating missing value. Rodrigues, 

et al. (2001) proposed an imputation method to be used with singular spectrum-based 

techniques which is based on a weighted combination of the forecasts and hind-casts yield by 

the recurrent forecast method. They used it to estimate missing data in the total volume of 

passengers in a group of international airlines data (Box, et al., 2008). They observed that the 

method was easy to implement and the results obtained suggested an overall good 

performance. This method incorporates elements from a wide range of mathematical fields 

including classical time series analysis, multivariate statistics and geometry, dynamical 

systems, as well as signal processing (Golyandina, et al., 2001). It aims at describing the 

structure of the time series as a sum of trend, seasonal variations and noise. The workflow of 

the SSA gap-filling and smoothing algorithm proceeds in four phases.  

The first phase in SSA iterative gap filling algorithm includes centering the original time 

series on zero by subtracting the mean value of all its elements and zeroing the missing data 

values (Musial, 2011, page 7905-7923). The inner loop of the SSA procedure which 

comprises decomposition, grouping and reconstructing is then performed first on this 
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transformed time series. The missing values are replaced by computed values of the leading 

Empirical Orthogonal Functions (EOF) and on this basis the first estimate of the first 

constructed component is generated.   

Missing values replaced by the first estimate are now replaced by the second estimate of the 

first leading component. The SSA gap filling algorithm is suitable for reconstructing time 

series with a highly harmonic oscillation shapes (Vautard, et al., 1992) or nonlinear trends 

(Ghil, et al., 2002). It is economical in the sense that a small number of SSA eigenmodes 

may be enough in the   reconstruction of the original time series (Musial, 2011). This is an 

advantage over traditional spectral methods which require many trigonometric functions with 

different phases and amplitudes to provide a reliable estimate. On the other hand, the many 

steps in the computational requirements of the SSA gap-filling algorithm implementation are 

taken as weaknesses in estimating missing values involving a large number of time series. In 

addition, it has been noted that this method may not give good estimates when there are 

many missing values in time series (Kondrashov and Ghil, 2006). The SSA gap filling 

method can be extended to spatial-temporal data or to regenerate missing values in 

multivariate time series.  

2.13 Artificial neural networks 

Artificial Neural Networks (ANN) provides a rich, powerful and robust non-parametric 

modeling framework with proven and potential applications in many fields of the sciences 

(Popova, et al., 2014). Indeed, the network model is largely determined by the characteristics 

of the data. The advantage of neural networks is that they can flexibly model nonlinear 

relationships without any prior assumptions about the underlying data generation process (Qi, 
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et al., 2001). These characteristics of ANNs have encouraged many researchers to use the 

neural network models in broad spectrum of real-world applications. Sometimes, the ANNs 

provide better alternatives than the other techniques for solving a variety of problems 

(Wenzel and Schröter, 2010; Pashova and Popova, 2011). Artificial neural network are in 

general, flexible nonlinear tools capable of approximating any sort of arbitrary function 

(Hornick et. al., 1989).  

Modeling univariate time series using ANN is generally carried out using a certain number of 

lagged terms in the series as input and the forecasts as the output.  Masters (1993) established 

that if there is a known seasonality in the data, then the number of seasons in that data can be 

used to identify the lags in the ANN model for forecasting.  

There are several types of ANNs that are used in modeling. One of them is the multilayer 

perceptron which is widely used for modeling of nonlinear dependences (Rumelhart and 

Clelland, 1986). A multi-layer  perceptron  (MLP) model is made up of a layer  of N input 

neurons,  a layer of M output neurons and one or more hidden layers, although it has been 

shown that for most problems  it would be enough to have only one layer of hidden neurons ( 

Hornick,  et  al, 1998).  In this type of framework, the connections between neurons are 

always feed-forward, that is, the connections feed from the neurons in a certain layer towards 

the neuron in the next layer.  According to Moreno (2011), the mathematical representation 

of the function applied by the hidden neurons in order to obtain an output pjb  when faced 

with the representation of an input vector or pattern pNpipppi XXXXX ,,,: 21  is given by  
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where i=1,2,..,p, Lf is the activation function of hidden layers L, j is the threshold of hidden  

neuron j, ijw  is the  weight of the connection between  input neuron i and hidden neuron  j 

and piX   is the input signal received by input neuron i for pattern p. The output signal pkŷ  

provided by output neuron k for pattern p, is given by 

)(ˆ
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where  mf  the activation function  of output neuron m, k is the threshold of hidden  neuron 

k, jkv  is the input signal received by input neuron j and output neuron k. In a general way, 

sigmoid function is used in the hidden layer neurons in order to give the neural network the 

capacity of learning the possible nonlinear function. MLP network training is carried using 

the application of gradient descent algorithm (Rumelhart, et al, 1986). This is shown figure 1 

below. 
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Figure 1: Layers of Artificial Neural Network 

pkŷ  is used as an estimate of the missing value when we input the vector of the r-lagged 

values     ( 1pX , 2pX ,…, prX )  in the neural network model  developed. 

The multilayer perceptron (MLP) model can be considered as a semi-parametric nonlinear 

function which relates the input data to the output data. It has been widely used to model 

complex relationships in data (Haykin, 1999). In time series modeling and atmospheric 

research, MLP is extensively used to capture the unknown relationships in data. It is also 

used in time series imputation researches due to the reported benefits (Junninen, et al., 2004). 
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 2.13.1 Model fitting using ANN 

Studies indicate that consideration of statistical principles in an ANN model building process 

may improve the model performance (Cheng and Titterington, 1994; Sarle, 1994). 

Consequently, it is important to adopt a  procedure in the development of ANN models; 

taking into account issues such as data pre-processing, the determination of adequate model 

inputs and a suitable network architecture, parameter estimation (optimization) and model 

validation (Maier and Dandy, 1999b). In addition, careful selection of a number of internal 

model parameters is vital. The general function of these networks is given as 
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where 0 1 2[ , , ,..., ]nX x x x x  is the vector of the lagged observations or inputs of the time 

series, and ( , )w    are the network weights. I and H are the number of input and hidden 

units in the network and g(.) is a non-linear transfer function (Anders, et. al, 1998). How to 

select the input vector of a MLP and the number of hidden units in the hidden layer remains 

unresolved in research (Hornick, 1999). 

2.13.2 Optimal architecture of ANN 

Single hidden layer feed forward network is the most widely used model for time series 

modeling and forecasting (Zhang, et al., 1998). The model has three layers of simple 

processing units connected by acyclic links. These layers include input, hidden and the 

output layers. A MLP is trained using different number of hidden layers. It has been shown 
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that ANNs with one hidden layer can approximate any function, given that sufficient degrees 

of freedom (i.e., connection weights) are provided (Hornik, et al., 1989).  

However, in practice many functions are difficult to approximate with one hidden layer, 

requiring a large number of hidden layer nodes (Cheng and Titterington, 1994; Flood and 

Kartam, 1994). The uses of more than one hidden layer provide greater flexibility and 

enables approximation of complex functions with fewer connection weights in many 

situations (Flood and Kartam, 1994; Sarle, 1994; Tamura and Tateishi, 1997). Flood and 

Kartam (1994) suggest using two hidden layers as a starting point. However, it must be 

stressed that optimal network geometry is highly data dependent. The number of nodes in the 

input layer is fixed by the number of model inputs, whereas the number of nodes in the 

output layer equals the number of model outputs. The choice of number of hidden nodes, q, 

is subjective (Mehdi and Mehdi, 2010).  

Another essential task of ANN modeling of time series is the selection of the number of 

lagged observations, denoted by p, the dimension of the input vector (Zhang, 2012).  This is 

perhaps the most important parameter to be estimated in an ANN model because it plays a 

major role in determining the (nonlinear) autocorrelation structure of the time series.   

In practice, simple network structure that has a small number of hidden nodes often works 

well in out-of-sample forecasting. This may be due to the over fitting effect typically found 

in the neural network modeling process. An over-fitted model has a good fit to the sample 

used for model building but has poor generalizability to out of the sample data (Demuth and 

Beale, 2004). 
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Although many different approaches exist in for finding the optimal architecture of an ANN, 

these methods are usually quite complex in nature and are not easy to implement (Zhang et 

al., 1998). Furthermore, none of these methods can guarantee the optimal solution for all real 

prediction problems. To date, there is no simple clear-cut method for the determination of 

these parameters and the usual procedure is to test numerous networks with varying numbers 

of input (p) and hidden (q). For each network, estimate generalization error. The network 

with the lowest generalization error is selected (Hosseini, et al., 2006).  

2.13.3 Data pre-processing in ANN modeling 

 ANN models are no exception to the pre-processing of data (Kaastra and Boyd, 1995). Data 

pre-processing can have a significant effect on model performance. The available data should 

be divided into their respective subsets which include training, testing and validation prior to 

any data pre-processing (Burden, et al., 1997). Generally, different variables cover different 

ranges. In order to ensure that all variables receive equal weight during the training process, 

they should be standardized.  In addition, the variables must be scaled in such a way as to be 

proportional to limits of the activation functions used in the output layer (Mills and Hall, 

1996). For example, since the outputs of the logistic transfer function lie between 0 and 1, the 

data have to be generally scaled in the range (0.1–0.9) or (0.2–0.8). It should be noted that 

when the transfer functions in the output layer are not bounded (e.g. linear), scaling is not 

strictly required (Karunanithi, et al., 1994). However, scaling to uniform ranges is still 

recommended (Masters, 1993). 

Another important issue to consider is stationarity of the data. Until recently, this has 

received very little attention in the development of ANN models. However, there are good 
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reasons why the removal of deterministic components in the data (i.e. trends, variance, 

seasonal and cyclic components) should be considered (Masters, 1993). Two methods used in 

transforming a non-stationary model to a stationary model include differencing and 

logarithmic transformation techniques. Differencing has already been applied to neural 

network modeling of non-stationary time series (Chng, et al., 1996). However, use of the 

classical decomposition model may be preferable, as differenced time series can possess 

infinite variance (Irvine and Eberhardt, 1992).  

2.13.4 Training in ANN modeling 

The data presented to the neural networks are scaled in the range [0, 1]. All neural networks 

have a single output with an identity function. Gradient descent back-propagation is used for 

the training. The model parameters, learning rate, a cooling factor per epoch and momentum, 

are set. The momentum term may be helpful in preventing the learning process from being 

trapped into poor local minima, and is usually chosen in the interval [0:1]. Once a network 

structure (p, q) is specified, the network is ready for training; this is a process of parameter 

estimation that ensures the minimization of the mean square error on the test data. The mean 

squared error is evaluated in every epoch and the training proceeds until early stopping 

criterion is satisfied (Kourentzes and Crone, 2008). Finally, the estimated model is evaluated 

using a separate hold-out sample that has not been used in the training process. The network 

performance on the test set is a good indicator of its ability to generalize and handle data on 

which it has not been trained. If the performance on the test is poor, the network 

configuration or learning parameters can be changed. The network is then retrained until its 
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performance is satisfactory. The test and train procedures involve training the network on 

most of the input data (around 70 % or more) and testing on the remaining data.  

A major problem in training an ANN is deciding when to stop training. Since the ability to 

generalize is fundamental for these networks to predict future values, overtraining is a serious 

issue (Lawrence, 1997). Overtraining occurs when the system memorize patterns and thus 

loses the ability to generalize. Overtraining can occur by as a result of using too many hidden 

nodes or training for too many time periods (epochs). However, overtraining can be 

prevented by performing test and train procedures or cross-validation. Most studies suggest 

that the number of iterations during training should lie between 85 and 5000 iterations 

(Doboeck, 1994). He further claims that training is affected by many varied parameters and 

so it is difficult to determine a general value for the number maximum number of epochs. 

Most neural network software program provide default values for learning rate that typically 

work well (Önder, E., Bayır, F., Hepsen, A.,2013).  

2.13.5 Performance measures 

The predictive capabilities of the optimal linear estimates are compared with estimates 

obtained from artificial neural network (ANN) and exponential smoothing methods. The 

Mean Absolute Deviation (MAD) and Mean Squared Error (MSE) are computed and 

employed as performance indicators. These measures are given by 

   MAD=
n

e
n

t

t
1

       (1)
 

and     
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                MSE=
n

e
n

t

t
1

                                    (2)
 

2.13.6 Validation in ANN modeling 

Once the training (optimization) phase has been completed, the performance of the trained 

network has to be validated on an independent data set using the criteria chosen. It is 

important to ensure that the validation data should not have been used as part of the training 

process for whatever reasons. If the difference in the error obtained using the validation set is 

remarkably different from that obtained using the training data, it is likely that the two data 

sets are not representative of the same population or that the model has been over-fitted 

(Masters, 1993).  

2.13.7 Empirical studies on missing values using artificial neural networks 

Most of the studies done on missing values on artificial neural networks have been based on 

hydrological and meteorological time series data. Shukur and Lee (2015) claimed that wind-

speed time series data is generally prone to missing values.  They further noted that when the 

data is nonlinear, other methods such as K-nearest neigbour, kalman filter and linear 

interpolation may not be appropriate for estimating missing values.  Therefore they proposed 

a hybrid of ANN and AR methods denoted by ANN-AR. Their tests showed that ANN-AR 

estimates give more accurate results for hydrological data. Abdalla and Marwala (2005) have 

used neural networks and genetic algorithms to approximate missing data in a database.  

 

Other hybrid models that incorporate various artificial neural networks have also been used 

to specifically estimate missing stream-flow data (Elshorbagy, et al., 2002). Current advances 
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in estimation techniques for predicting missing stream-flow data continues to incorporate 

basic ANN concepts (Ng, et al., 2009). Malek, et al. (2008) developed a data infilling model 

that utilizes the basic principles of artificial neural network (ANN) combined with the nearest 

neighbors imputation technique. Their results showed that the method proposed was robust 

enough to cope with vagaries due to varying sample sizes and extreme data insufficiency. 

Further, the study showed that ANN is superior in filling in missing values for hydrological 

data. Pachepsky and Yakov (2010) developed a model that incorporated artificial neural 

network for infilling missing values in time series meteorological data. 

2.13.8 Estimation of missing values using exponential smoothing 

Gupta and Srinivasan (2011) used exponential smoothing (EXP) method in estimating 

missing values for time series data on water flow. They reported that they obtained good 

results. Since time series data are noisy, the ARIMA models may not provide better estimates 

than those obtained from the nearest neighbors and cold deck methods. It has been found that 

the exponential smoothing with a constant α=0.2 may produce better forecasts than those 

based on ARIMA models (Background Facts on Economic Statistics, 2013). Time series 

smoothers estimate the level of a time series at a given time as its conditional expectation 

given present, past and future observations, with the smoothed value depending on the 

estimated time series model (Ledolter, 2008). 

Nassiuma and Thavaneswaran (1992) derived a recursive form of the exponentially 

smoothed estimates for a nonlinear model with irregularly observed data and discussed its 

asymptotic properties. 

 

http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A(Nassiuma%2C+D.K.)
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It is evident from the literature that imputation of missing values is a topic of interest to many 

researchers. This is reflected by the many studies done in this area. Further, different 

imputation methods have been developed for different types of time series models. Most of 

these are linear time series models. It is also evident that these methods have been based on 

criteria such as maximum likelihood method, estimating function and simple linear 

interpolation techniques. Other simple methods like mean of adjacent values have been 

suggested. However, what is lacking in the literature is an explicit method for estimating 

missing values for a class of nonlinear time series called bilinear time series models. The 

only case recorded so far is the estimation of missing values for a simple order BL (1,0 , 2 

,0). This method was based on estimating function. No estimates of missing values have been 

derived using the dispersion error. Further, no simulation study has been done on the 

performance of estimates obtained. These are important gaps in the literature that the study 

set to fill. 
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CHAPTER THREE 

OPTIMAL LINEAR ESTIMATORS OF MISSING VALUES 

3.1 Introduction 

Optimal linear estimates of missing values for several simple, pure and general bilinear time 

series models whose innovations follow Gaussian, Student-t and GARCH distributions are 

derived by using minimum dispersion error criterion. Two assumptions were made in the 

process of the derivations; the first one is that the time series models used are stationary and 

thus their roots lie within the unit circle. Secondly, the higher powers (of orders greater than 

two or products of coefficients of orders greater than two) of the coefficients are 

approximately negligible. This is a consequence of the result of the first assumption. Further 

the innovations consisted of sequence of independent and identically distributed (i.i.d) 

random variables for the normal and t-distribution innovations.  

3.2 The steps in deriving the optimal linear estimators 

The steps followed in the derivation of the optimal estimates are as follows: 

 The first step is to express the stationary bilinear time series model as a linear 

combination of the innovation sequence of the series. 

  Then find the h-steps ahead forecast for the time series obtained in the first step. 

 Obtain the h-steps-ahead forecast error. 

 Square the forecast error and take its expectation. This is the dispersion error. 

 Differentiate the dispersion error with respect to the coefficient ka to obtain the value of 

the coefficient that result in minimum dispersion error.  
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The optimal linear estimate 

mx  for estimating the missing observation  mx   is by given  

)ˆ(ˆ
1

kk

n

mk

kmm xxaxx  




              (3)

 

where mx̂  is the estimate obtained from the model based on the previous observations of the 

data before the point m. The coefficients ka (k=1, 2,.., k-m) are to be estimated by 

minimizing the dispersion error (disp mx ) given by equation (3) (Nassiuma,1994). 

3.3 Estimating missing values for bilinear models with normally distributed innovations 

Pure bilinear time series models are models described by the bilinear parameter term only 

(Owili, Nassiuma and Orawo 2015c). The coefficients of autoregressive and moving average 

components are zero. We look at both the simple and the general pure bilinear time series 

models. 

3.3.1   Simple pure bilinear time series models with normally distributed innovations 

The simplest pure bilinear time series model of order one, BL (0, 0, 1, 1)  is of the form 

)1,0(~,1111 Newhereeexbx ttttt        (4) 

The missing value estimate for this model is based on the following theorem 3.1. 

Theorem 3.1 

The optimal linear estimate for BL (0, 0, 1, 1) with normally distributed innovation is given 

by 
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Proof 

Through recursive substitution of equation (4), the stationary BL (0, 0, 1, 1) is obtained 
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Therefore the forecast error is 

htht xx   ˆ = htiht

h

i

i

j

jht eeeb 



 

 








 
1

1 1

11 .                (5) 

Equation (5)  can be expressed as 
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Substituting equation (6) in equation (3), we have 
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Simplifying each of the terms of equation (7) separately, we obtain 
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Hence equation (7) can be simplified as 
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Now differentiating equation (8) with respect to ka and equating to zero, we obtain 
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Substituting the values of ka  in equation (3), we obtain optimal estimator of the missing 

value as  
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This result shows that the missing value is a one step-ahead prediction based on the past 

observations collected before the missing value. This is similar to the findings of Nassiuma 

(1994) which found kâ =0 for missing values of ARMA stable processes in some cases. 

3.3.2 Estimating missing values for pure bilinear time series model with normal  

innovations 

The pure bilinear time series model BL (0, 0, p, p) with normal innovations is given by  

)9()1,0(~,
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The missing value estimate for this model is based on the following theorem 3.2. 
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Theorem 3.2 

The optimal linear estimate of the missing value for the pure bilinear time series model BL 

(0, 0, p, p) is given by 
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Proof 

The stationary pure model is obtained by recursive substitution of equation (9)
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Setting t at t+h in equation (11), the h-steps ahead forecast is given by 

 

   12)(
121

21

1 12

212211

,1

1

1

2

1 1 1

hoeeebb

eeebx

p

sss

shtsht

p

s

p

ss

sshtssss

p

i

tisht

i

i

j

sjhtssht



































 







 









 



 

          Thus h-steps ahead forecast error is given by 
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Now substituting equation (13) in equation (3) and setting h-1=k-m, we get 
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Substituting equation (14) in equation (3) we have 
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Simplifying each term in equation (15), we obtain
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1 1 2 2

1 2 1

2 2 4 2 2 2

1 2

1 1

1
2 4 2 2 2 2

1 1 1

(3 ) ,

2 (3 1)

n n

k ss k

k m k m

m p pn n

k s s s s k ss

k m s s s k m

a b a for s k m s k m

Disp x

a b b a b

  

   

   



     

 
      

 
  
   
  

 

  

   (16) 

Differentiating equation (16) with respect to ka and setting the result to zero we get
, 
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Hence from equation (17), we have 
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These results indicate that the observed values after the missing point may play a role in the 

estimation of missing value(s). In most cases there is a weight assigned to these values; 

values near the missing values are assigned higher weights. Therefore the optimal linear 

estimator of a pure bilinear time series model is 
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Corollary 

i) For the case 00
1122
 ssss borb  then 0ˆ ka  

ii) When k-m=0, it means the missing data point is the last data. For this case, 0ˆ ka . 
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iii) When k-m=1, it means the missing data point is the second last data. For this case 

Therefore k-m cannot be equal to s2s2. Therefore, 0ˆ ka . 

iv) For most cases, k-m cannot be equal to s1 or s2 and therefore for pure bilinear time series, 

we can generally say that 0ˆ ka .This means that for all pure bilinear models, we 

have .0ˆ ka
 

3.3.3 Estimating missing values for BL (1, 0, 1, 1) with normal innovations 

The stationary bilinear time series model of order BL (1, 0, 1, 1) is given by 

 19)1,0(~,111111 Neeexbxx tttttt  

.
 

The optimal linear estimates for this model is obtained using theorem 3.3. 

Theorem 3.3 

The optimal linear estimate for the bilinear time series model with normal errors, BL (1, 0, 1, 

1), is given by 
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Proof 

Performing recursive substitution of equation (19), the stationary BL (1, 0, 1, 1) can be 

expressed as 
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The h-steps ahead forecast is given by 
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substituting equation (22) in equation (3) we have
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Simplifying each of the terms on the RHS of equation (18), we obtain 
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Equation (24)  is simplified as follows: 
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Hence equation (24) becomes 
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Differentiating equation (25) with respect to the coefficient ka , we get
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The optimal linear estimate of 

mm xbygivenx ,  that minimizes the error dispersion error is 

thus given as 
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3.3.4 Estimating missing values for BL (0, 1, 1, 1) with normal innovations 

The bilinear time series model BL (0, 1, 1, 1) is given by 

 26)1,0(~,11111 Newhereeeexbx tttttt   

 

Theorem 3.4 can is used to estimate the missing value for BL (0, 1, 1, 1) with normally 

distributed innovations. 
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Theorem 3.4 

The optimal linear estimate of a missing value for BL (0, 1, 1,1) is given by 
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Proof 

The   stationary bilinear BL (0, 1, 1, 1) is expressed as  

 27
1 1

11

1

1

1

t

i

jt

i

j

jt

i

it

i

j

jtt eeebeex 




























  





















 

The h-steps ahead forecast based on equation (27) is given by 
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and the forecast error  is expressed as  
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Substituting equation (28) in equation (3), we have 
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Simplifying each of the terms in equation (28), we obtain the following: 
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3.3.5 Estimating missing values for BL (1, 1, 1, 1) with normal innovations 

The bilinear time series model of BL (1, 1, 1, 1) is   given by 

 29)1,0(~,1111111 Newhereeeexbxx ttttttt   

 

The missing value estimate for the BL (1, 1, 1, 1) model is based on the following theorem 

3.5. 
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Theorem 3.5 

The optimal linear estimate for BL (1, 1, 1, 1) is given by 
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Proof 

Thus the stationary BL (1, 1, 1, 1) can be expressed as 
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and h-steps ahead is forecast based on equation (30) is 
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The dispersion error is 
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Simplifying the terms in equation (31) we obtain, 
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3.3.6 Estimating missing values for BL (p, 0, p, p) with normal innovation 

The bilinear time series model of BL (p, 0, p, p) is   given by 
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The missing value estimate is based on the following theorem 3.6.  

Theorem 3.6 

The optimal linear estimate for one missing value mx  for the general bilinear time series 

model 

 BL (p, 0, p, p) is given by 
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Proof 

Through recursive substitution of equation (24), the stationary bilinear time series model  
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BL (p, 0, p, p) is expressed as 
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The h-steps ahead forecast is given by 
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and the  forecast is 
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  The forecast error is  
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Substituting in equation (35) in equation (3), we obtain 
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The terms on the RHS side of equation (36) are simplified as follows
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Differentiating equation (37) with respect to ka and setting to zero, we obtain  
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Solving equation (38) for ,ka  we get 
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The optimal linear estimate is therefore given by 
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Corollary 

For p=1, we have the bilinear model BL (1, 0, 1, 1). The optimal linear estimate is given by 
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3.3.7 Estimation of two missing values for bilinear time series with normal innovations 

We consider the situation where two consecutive observations are missing in the data. The 

case of non-consecutive missing values can easily be obtained using the previous results and 

so it is not necessary to be discussed here. Suppose two consecutive values k and 1k  are 

missing. Now we could use a vector form such that T

kkm ),( 1  while the matrix with the 
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 We can rewrite equation (3) in vector form as 
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3.3.8 Estimating two missing values for BL (1, 0, 1, 1) with normal innovations 

The stationary bilinear time series model of order BL (1, 0, 1, 1) is given by 

 40)1,0(~,111111 Neeexbxx tttttt  

 

The estimators for two missing values for BL (1, 0, 1, 1) with normal errors is given in 

theorem 3.7. 
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Proof 

From equation (22), the h-steps ahead forecast error for BL (1, 0, 1, 1) is given by 
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Substituting equation (41) in equation in (39) we obtain, 

   

     42

ˆ2ˆˆ

21 1

111

221 1

111

2

21 1

111

1

T

s

n

ks

sis

ks

i

i

j

js

n

ks

ss

n

ks

sis

ks

s

i

j

js

n

ks

s

T

s

n

ks

sis

ms

i

i

j

js

n

mS

k

m

T

mm

eaeebaeaeebaE

eaeeba
eEeeEdispV













































































































  

 







 









 











 









 

Simplifying equation (42) we obtain: 

  
T

mmeeE ˆˆ
 



 

 

63 

 

 

 


















































































































 











 







 

 

ks
n

ks

s

T

s

n

ks

sis

ks

ks

i

j

js

n

ks

sm

T

s

n

ks

sis

ks

i

i

j

js

n

ks

sm

a

eaeebae
E

eaeebae
E







2

22 1

111

2

21 1

111

2

2

ˆ
2

ˆ
2

 

   

   433 2

11

2

1

2

2

21 1

111

221 1

111

2
































































  









 









 





T

s

n

ks

s

T

s

n

ks

sis

ks

i

i

j

js

n

ks

ss

n

ks

sis

ks

s

i

j

js

n

ks

s

baa

eaeebaeaeebaE





 

Therefore equation (43) becomes 
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Therefore the estimate of the missing value is given by 
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where I is an identity matrix. 

Corollary 

When   we have only one missing value, ks aa ˆ , 2 , s ka a .Therefore we have 
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this can be expressed as
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3.4 Estimates of missing values for pure bilinear time series with student t-errors 

The missing values can be obtained using the following theorems. 

3.4.1 Estimates of missing values BL (0, 0, 1, 1) with student t errors 

The pure bilinear time series process of order one BL (0, 0, 1, 1) is of the form 

 46)1,0(~,1111 teeexbx ttttt    
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The estimate of the missing value for this model is given by theorem 3.8. 

Theorem 3.8 

The optimal linear estimate for missing observation for BL (0, 0, 1, 1) with student errors is  

Proof 

The stationary BL (0, 0, 1, 1) is given by 
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Substituting equation (32) in equation (3), the dispersion error is given by  
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Simplifying each of the terms of equation (49), we obtain the following: 

2

2)ˆ(:



n

n
mm xxETermFirst  

 


mkk

n

mk

kmm eExxaxxETermnd ˆ2)ˆ()ˆ((2:2
1

ik

mk

i

i

j

jk

n

mk

k eeba 



 





 








1 1

11

1

 

0

.2

....(2

ˆ2

ˆ2

1

1

11

2

12111

1 1

11

1

1 1

11

1











































 

 





















 









 





m

i

ik

mk

mkm

mkkk

mk

mkm

ik

mk

i

i

j

jk

n

mk

km

ik

mk

i

i

j

jk

n

mk

km

eEbaEe

eeebaEe

eebaeE

eebae

 

ik

mk

i

i

j

jk

n

mk

km eebaeE 









  














0

11

1

ˆ2  

 
 

0
...

ˆ2
2

12

3

11

2

12

2

11

2

2113

2

1

2

11

2

1112

2

111























mmmmmmm

mmmmmm

m

eeebeebeba

eebebaeba
eE  

 49)ˆ()ˆ()ˆ(2)ˆ(

)ˆ()ˆ()(

2

11

2

2

1

2































kk

n

mk

kkk

n

mk

kmmmm

kk

n

mk

kmmmm

xxaExxaxxExxE

xxaxxExxE



 

 

67 

 

 
 

 
 

   

 50
2

)4(

2
)4()4(3)4(3

...

...

:

1

2

1

22

11

1

22

11

2

3

2

11

2

2

2

11

2

1

42

1

2

2

4

11

4

1

2

2

4

11

4

2

2

11

2

3

42

1

4

11

4

1

2

11

2

2

42

11

2

1

2

2

12

3

11

2

12

2

11

2

2113

2

1

2

11

2

1112

2

111

2

1 1

11

1






































































 



















 





n

n
aab

n

n
abababa

eeebeebeba

eebebaeba
E

eeebeebeba

eebebaeba
E

eeebaEtermThird

n

mk

k

n

mk

kx

n

mk

kxmxmxm

mmmmmmm

mmmmmm

mmmmmmm

mmmmmm

kik

mk

i

i

j

jk

n

mk

k





 

Hence equation (50) can be simplified as 
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This shows that the missing value is a one-step-ahead prediction based on the past 

observations collected before the missing value. This is in agreement with other studies that 

have estimated missing values using forecasting (Nassiuma, 1994). 

3.4.2 Estimating missing values for BL (1, 0, 1, 1) with student-t errors 

The bilinear model BL (1, 0, 1, 1) with t- errors is expressed as  
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The missing value is obtained using theorem 3.9. 
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The optimal linear estimate for missing value for BL (1, 0, 1, 1)   with student errors is given 
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Proof 

The stationary BL (1 ,0 ,1 ,1) can be expressed as  
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The h-steps ahead forecast is given by 
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and the h-steps ahead forecast error is given by 
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Substituting equation (54) in equation (3), we obtain 
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Simplifying the terms RHS of equation (55), we obtain 
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Hence equation (56) becomes 
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Differentiating equation (56) with respect to the coefficients, we get 
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The optimal linear estimate of ,, 

mm xbydenotedx  that minimizes the error dispersion error 

of the estimate is thus given as 
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3.4.3 Estimating missing values for BL (0, 1 ,1 ,1) with student-t errors 

The BL (0, 1, 1, 1) model with student-t errors is given by 
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ttttt eeexbx   11111   )1,0(~ tewhere t                               (57) 

The missing values are obtained from the following theorem 3.10 

Theorem 3.10 

The optimal linear estimate for BL (0, 1, 1, 1)   with student errors is given by 
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Proof 

The   stationary bilinear BL (0,1,1,1) is expressed as  
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The h-steps ahead forecast is given by 
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and the  forecast error  is given by 
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Substituting equation (59) in equation (3), we get 
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Simplifying each of the terms of equation (60), we obtain 
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3.4.4 Estimating missing values for BL (1, 0, 1, 1) with student-t errors 

The bilinear BL (1,0,1,1)  model  with student t errors is 
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 61)1,0(~,111111 tewhereeexbxx tttttt  
 

The missing values are estimated based on the following theorem 3.11. 

Theorem 3.11 

The optimal linear estimate for BL (1, 0, 1, 1)   with student errors is given by 
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Proof 

Performing recursive substitution on equation (61), the stationary BL (1, 0, 1, 1) can be 

expresses as 
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Substituting equation (63) in equation (3), we have 
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Simplifying equation (64), we obtain 
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Differentiating equation (66 with respect to the coefficients ka  and setting it to zero, we get 
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The optimal linear estimate of 

mm xbygivenx ,  that minimizes the error dispersion error of 

the estimate is thus given as 
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3.4.5 Estimating missing values BL (p, 0, p, p) with Student-t innovations 

The pure bilinear time series model BL (p, 0, p, p) with student-t errors is 
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The missing values can be estimated using the following theorem 3.12. 

Theorem 3.12 

The optimal linear estimate for one missing value mx  for the general bilinear time series 

model BL (p, 0, p, p) with student t-errors is given by 
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Where v(4) is the fourth moment of the data given a 
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It can be estimated by v(4)=kurtosis*(variance)2 

Proof 

The stationary bilinear time series model BL (p, 0, p, p) is of the form 
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The h steps ahead forecast for equation (67) is given by 
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and the  forecast is 



 

 

79 

 

trsk

p

r

p

s

p

j

jksjs

p

j

jkrjr

rsk

p

s

p

r

p

j

jksjr

p

j

jksjssjt

p

i

k

i

i

j

p

j

jksjsk

eeebeb

eebebeebx




















































 









 











  



 

  

11

111

1

1 1 1





 

There forecast error is  

trsk

p

r

p

s

p

j

jksjs

p

j

jkrjr

rsk

p

s

p

r

p

j

jksjr

p

j

jksjssjt

p

i

mk

i

i

j

p

j

jksjskk

eeebeb

eebebeebxx



















































 









 











  



 

  

11

111 1 1 1

ˆ





 

+      69)( 1122

0 1

212122222212212 kkk

i

i

j

ikikikjkjk eeeeeeebeb  



 

   

Substituting equation (69) in equation (3) and simplifying, we obtain 
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Corollary 

For p=1, we have the bilinear model BL (1, 0, 1, 1). The optimal linear estimate is given by 
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3.5 Estimating missing values for bilinear time series model with GARCH innovations 

The bilinear time series tx  of order BL (p, q, m, k) with GARCH innovations satisfies the 

difference equation 
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with the inequality conditions 00  ,  0i   for i=1,…,q,  0i , for i=1,…,p  to ensure 

that the conditional variance is strictly positive. Missing values for BL (1, 0, 1, 1) can obtain 

from the following theorem 3.13. 

3.5.1 Estimating missing values for BL (0, 0, 1, 1) time series model with GARCH 

          innovations 

The simplest pure bilinear time series model of order one, BL(0, 0, 1, 1)  is of the form 

 731111 tttt eexbx    

with et  distributed as specified in equation (43). 

Theorem 3.13 

The optimal linear estimate for missing observation for BL (0, 0, 1, 1) with GARCH errors is 

given by 
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Proof 

Through recursive substitution of equation (73), the stationary BL (0, 0, 1, 1) is obtained as 
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Simplifying each term of equation (76) separately, we have
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Hence equation (77) can be simplified as 
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Now differentiating equation (78) with respect to ka and equating to zero, we obtain 
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Substituting the values of ka  in equation (3), we obtain optimal estimator of the missing 

value as  
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This is the same result we obtained for pure bilinear time series model whose innovations are 

distributed. This shows that the missing value is a prediction based on the past observations 

collected before the missing value. This is in agreement with other studies that have 

estimated missing values using forecasting. 

3.5.2 Estimating missing values for BL (1, 0, 1, 1) with GARCH innovations 

The bilinear BL (1,0,1,1)  model  with GARCH innovations errors is 

 79111111 ttttt eexbxx  

  

Where et is distributed as specified in equation (79). The estimate of the missing value is 

obtained using theorem 3.14. 

Theorem 3.14 

The optimal linear estimate for BL (1, 0, 1, 1) with GARCH errors is given by 








 



n

mk

mk

k

mk

mmmm xx
hb

exbxx
1

2

11

2

11

1
111111 )ˆ(

)13ˆ(

ˆ
ˆ




  

 

 



 

 

86 

 

Proof 

The stationary bilinear time series model with GARCH errors of order BL (1, 0, 1, 1) can be 

expressed as  
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The h-steps ahead forecast is given by 
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and the h-steps ahead forecast error is given by 
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Substituting equation (92) in equation (3), we have, 

   

   93

ˆ
2ˆ

2

11 1

111

1

11 1

111

1

2















































































 

 







 











 





k

n

mk

kik

mk

i

i

j

jk

n

mk

k

k

n

mk

kik

mk

i

i

j

jk

n

mk

km

mm

eaeebaE

eaeebae
EeExdisp





 

Simplifying equation (93), we obtain 
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Differentiating equation (94) with respect to the coefficients, we get 
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Therefore the estimate of the missing value for the BL (1, 0, 1, 1) is 
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3.5.3   Estimating missing values for BL (p, 0,  p,  p) with GARCH errors 

The bilinear time series BL (p, 0, p, p) is given by 
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with the inequality conditions 00  ,  0i   for i=1,…,q,  0i , for i=1,…,p  to ensure 

that the conditional variance is strictly positive. The estimate of the missing value for BL (p, 

0, p, p) with GARCH errors is given in theorem 3.15. 

Theorem 3.15 
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The optimal linear estimate for one missing value mx  for the general bilinear time series 

model BL (p, 0, p, p) is given by 
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Proof 

The stationary bilinear time series BL (p, 0, p, p) can be expressed as  
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The forecast can be expressed as 
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and the  h-steps ahead forecast error is 
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Substituting equation (97) in equation (3) and simplifying, we get 
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Differentiating equation (98) with respect to ka  and setting the result to zero,  we obtain 
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The missing value estimate is therefore given by 
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Corollary 

For p=1, we have the bilinear model BL (1, 0, 1, 1). The optimal linear estimate is given by 
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Finally, one observation that we can make about the derived optimal linear estimates is that 

for pure bilinear time series models, the estimate of missing values is the one-step-ahead 

forecast error. For the other models, the estimate is also a function of observations after the 
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missing value point which are given weights depending on how close they are to the  to the 

missing value point. 
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CHAPTER FOUR 

ESTIMATION OF MISSING VALUES (RESULTS) 

4.1 Introduction 

In this section, the results of the estimates obtained using the optimal linear estimation, 

artificial neural networks and exponential smoothing methods based on data generated from 

bilinear   models with different innovations are given. The data with normally distributed 

innovation was simulated from the models: BL(0,0,1,1), BL (0,0,2,1), and BL(1,0,1,1). The 

data simulated for student t-distribution included BL(0,0,1,1), BL(0,0,2,1) and BL(1,0,1,2). 

For GARCH distribution the data was simulated from the models: BL(0,0,1,1), BL(1,0,1,1) 

and BL(0,0,2,1). The R software was used to generate the bilinear random variables. The first 

1000 observations were discarded to reduce the influence of the initial data value used in the 

simulation. One hundred samples of size 500 were generated for each model and missing 

values created at positions 48, 293 and 496. The mean absolute deviation and mean squared 

errors were calculated for each model used. Simulation results are given in Tables 4.1-4.9 

and Figures 2-10. 

4.2 Time series plots of the bilinear models based on simulated data  

The data generated were plotted in graphs as depicted in Figures 2-10. These graphs are 

characterized by sharp outbursts. This is clearly evident in the graph of BL (0, 0, 1, 1). Sharp 

outburst is one of the characteristics of bilinear time series. For bilinear time series with 

student-t distributions, the range of the values is also large.  
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Figure 2: BL (0, 0, 1, 1) with Normally Distributed Innovations 

 

Figure 2 displays a classic example of a bilinear time series data.  It is evident that there are 

sharp out-bursts at position 50, 241 and 451. This is a pure bilinear series with the coefficient 

of the bilinear term, 2.011 b . It is also evident that the series is stationary since it has a 

constant trend. 
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Figure 3: BL (0, 0, 2, 1) with Normally Distributed Innovations 

Figure 3 displays a graph of a pure bilinear time series with more frequent outburst. The 

series has a constant trend hence it is stationary. 
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Figure 4: BL (1, 0, 1, 1) with Normally Distributed Innovations 

 

The series is not only stationary but the outbursts are less conspicuous. 

 

Figure 5: BL (0, 0, 1, 1) with t-Distributed Innovations 
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Figure 5 displays a bilinear time series with a few outbursts which are very conspicuous. This 

graph is similar to the one of the pure bilinear time series given in Figure 2 with normal 

innovations. The series has a constant trend hence it is stationary. 

 

Figure 6: BL (1, 0, 1, 2) with t-Distributed Innovations 

It is observable that the series is stationary and has sharp outburst of opposite signs. This is 

different from the other bilinear time series graphs discussed above. 
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Figure 7: BL (0,0,2,1) with t-Distributed Innovations 

Figure 7 displays the graph of a bilinear time series with more frequent outbursts of opposite 

signs. This figure is similar to the graph of BL (0, 0, 2, 1) model with normal distribution. 
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Figure 8: BL(0, 0, 2, 1) with GARCH Distributed Innovations 

Figure 8 displays the graph of BL (0, 0, 2, 1). It has numerous sharp outburst of opposite 

signs. It is similar to the graph of BL (0, 0, 2, 1)  with the student-t and normal innovations. 
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Figure 9: BL (0, 0, 1, 1) with GARCH Innovations 

Figure 9 has numerous sharp outbursts of the opposite signs at various positions in the data.  

It is slightly different from BL (0, 0, 1, 1) with either the normal innovations or the student-t 

innovations since it has more sharp outbursts. These again are of opposite signs. 
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Figure 10: BL (1, 0, 1, 1) with GARCH Innovations 

This graph is characterized by one conspicuous outburst at position 201. The data is 

stationary. The zero trends in the graph imply that the missing value estimate should be close 

to zero. This confirms one of the assumptions made in generating the data that the time series 

data are stationary. This implies that whereas the student-t and normal distributions are close 

in structure they are different from those of GARCH distributions. An interesting observation 

is that the time series models for normal and student distributions have similar structure 

which is quite different from that of the GARCH distributions. Hence estimates of missing 

values for normal and student-t distribution should have some common characteristics which 

are quite distinct from those of the GARCH distribution. 
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4.3 Efficiency measures for bilinear models with different distributions 

Data was analyzed using several software and the results obtained are summarized in Tables 

(1-9). From the analysis, the study found that the method for imputing missing values was 

correlated with the probability distribution of the innovation sequence of the data. This is 

similar to the findings of Musial, et al. (2011) who used different nonparametric methods to 

estimate missing values and concluded that each method exhibited advantages and 

drawbacks, and that the choice of an approach largely depends on the properties of the 

underlying time series and the objective of the research. More detailed analysis for each table 

is given below. 

Table 1: Efficiency Measures for BL (0, 0, 1, 1) with normal innovations 

 

MISSING 

POSITION 

 

OLE 

MAD 

ANN EXP 

 

OLE 

MSE 

ANN EXP 

48 0.764572 0.84293 0.762066 1.033225 1.223745 1.054167 

293 0.887287 0.900142 0.908151 1.166085 1.259637 1.215906 

496 0.949875 0.93157 0.952156 1.497507 1.363035 1.474815 

Total 2.601734 2.674642 2.622373 3.696817 3.846417 3.744888 

Mean 0.867245 0.891547 0.874124 1.232272 1.282139 1.248296 

From Table 1, it is evident that the OLE estimates had the lowest mean square error         

(MSE  =1.232272) among all the estimates of  the  missing values for the different missing 

data points positions, followed by EXP smoothing estimates (MSE=1.248296). Estimates 

based on ANN had the highest mean square error (MSE=1.282139). This implies that OLE 



 

 

104 

 

estimates were the most efficient estimators for the bilinear time series model BL (0, 0, 1, 1) 

with normal errors followed by the EXP estimates while ANN estimates were the least 

efficient. It is also evident that for all the estimators, the position of the missing value had a 

negative correlation with the efficiency of the estimates obtained.  

The estimates for position 48 were based on data in the neighborhood of 48 for OLE and 48 

for ANN. This also applied to the data point 293 and 496 where data points in the 

neighborhood of 293 and 496 were used respectively. It can be noted that the efficiency of 

the estimates generally did not improve with the sample size about the point of the missing 

value. 

Table 2: Efficiency Measures for BL (1, 0, 2, 1) with normal innovations 

 

MISSING 

POSITION 

 

OLE 

MAD 

ANN EXP 

 

OLE 

MSE 

ANN EXP 

48 0.792612 1.135251 0.98159 1.042752 2.620982 1.542025 

293 0.759908 0.870468 0.811869 0.906356 1.602965 1.078504 

496 0.803375 0.862982 0.932996 0.976211 1.214815 1.369218 

Total 2.355895 2.868701 2.726455 2.925319 5.438762 3.989747 

Mean 0.785298 0.956234 0.908818 0.975106 1.812921 1.329916 

From Table 2, it is clear that the OLE estimates of missing values were the most efficient 

(MSE=0.975106) for the different missing data point positions. This was followed by EXP 

smoothing estimates (MSE=1.329916). It is also evident that the size of the set of values used 

to estimate the missing values had an effect on the efficiency of the estimates obtained. All 
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estimates for data points 48 were less efficient than estimates obtained at data points 293. 

However, as the data point was increased to 496, the efficiency generally did not improve. 

Table 3: Efficiency Measures for BL (1, 0, 1, 1) with normal innovations 

 

MISSING               MAD                MSE 

POSITION     OLE ANN EXP OLE ANN EXP 

48 0.842466 0.946487 0.872985 1.122368 1.57565 1.296111 

       
293 0.893107 0.871257 0.907073 1.239053 1.246586 1.290295 

       
496 0.951015 0.948569 0.914346 1.442964 1.46972 1.369107 

       
Total 2.686588 2.766313 2.694404 3.804385 4.291956 3.955513 

       
Mean 0.895529 0.922104 0.898135 1.268128 1.430652 1.318504 

From Table 3, it can be concluded that based on MSE, the OLE estimates of missing values 

were the most efficient (MSE=1.268128) for the different missing data point positions 

followed by EXP smoothing estimates (MSE=1.318504). It is also evident that the size of set 

of values used to estimate the missing values had a negative correlation with the efficiency of 

the estimates obtained. All estimates for data points 48 were more efficient than estimates 

obtained at data points 496. 
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         Table 4: Efficiency Measures for BL (0, 0, 1, 1) with student-t innovations 

 

MISSING                  MAD 

 

                       MSE 

POSITION OLE ANN EXP 

 

OLE ANN EXP 

48 0.927299 1.252003 1.190896 

 

1.718008 2.706119 2.631451 

293 0.978332 0.961104 1.107915 

 

2.178498 1.802398 2.35478 

        496 0.897052 1.188884 1.14698 

 

1.347372 2.922418 2.977324 

        
Total 2.802683 3.401991 3.445791 

 

5.243878 7.430935 7.963555 

Mean 0.934228 1.133997 1.148597 

 

1.747959 2.476978 2.654518 

From Table 4, it can be concluded that based on MSE, the OLE estimates of missing values 

were the most efficient (MSE=1.747959) for the different missing data point positions 

followed by ANN estimates (MSE=2.476978). It is also evident that the size of the set of 

values used to estimate the missing values had a positive correlation with the efficiency of 

the estimates obtained. All estimates for data points 48 were less efficient than estimates 

obtained at data points 496. 
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Table 5: Efficiency Measures for BL (0, 0, 2, 1) with student-t innovations 

 

MISSING                 MAD                      MSE 

POSITION OLE ANN EXP OLE ANN EXP 

48 0.804529 0.992834 0.82809 1.211077 1.741109 1.293227 

       293 0.671182 0.800902 0.720927 0.914355 1.297314 1.088236 

496 0.654064 0.64545 0.680498 0.836314 0.8832 0.863463 

       
Total 2.129775 2.439186 2.229515 2.961746 3.921623 3.244926 

       Mean 0.709925 0.813062 0.743172 0.987249 1.307208 1.081642 

From Table 5, it can be concluded that based on MSE, the OLE estimates of missing values 

were the most efficient (MSE=0.987249) for the different missing data point positions 

followed by EXP smoothing estimates (MSE=1.081642). It is also evident that the size of the 

set of values used to estimate the missing values had a positive correlation with the efficiency 

of the estimates obtained for all the estimators. All estimates for data points 48 were less 

efficient than estimates obtained at data points 293 and 496. The estimates became more 

efficient as the position of missing data increased. 
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Table 6: Efficiency Measures for BL (1, 0, 1, 2) with Student-t innovations 

 

MISSING                     MAD 

 

                 MSE 

POSITION OLE ANN EXP 

 

OLE ANN EXP 

48 1.05252 1.05009 1.18255 

 

2.49592 2.08018 2.97117 

        293 1.25008 1.06888 1.40457 

 

2.63802 2.35919 3.44825 

        496 1.41045 0.94823 1.45937 

 

4.1928 1.94371 4.3707 

        
Total 3.71305 3.0672 4.04649 

 

9.32674 6.38308 10.79012 

        Mean 1.237683 1.0224 1.34883 

 

3.108913 2.127693 3.596707 

From Table 6, it can be concluded that based on MSE, the ANN estimates of missing values 

were the most efficient (MSE=2.127693) for the different missing data point positions 

followed by OLE estimates (MSE=3.108913). It is also evident that the size of the set of 

values used to estimate the missing values had mixed results on the efficiency of the 

estimates obtained. Generally the estimates showed a negative correlation with the size of the 

position of the missing value. 

We can conclude that OLE estimates generally give the optimal estimates of missing values 

and that the size of the position of the missing observation had a positive correlation with the 

efficiency of the estimates obtained. 
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Table 7: Efficiency Measures for BL (0, 0, 1, 1) with GARCH innovations 

 

MISSING                        MAD                    MSE 

POSITION OLE ANN EXP OLE ANN EXP 

48 0.804529 0.992834 0.82809 1.211077 1.741109 1.293227 

       293 0.661487 0.788114 0.719507 0.851441 1.20582 1.023331 

       496 0.654064 0.64545 0.680498 0.836314 0.8832 0.863463 

 
      Total 2.12008 2.426398 2.228095 2.898831 3.83013 3.180021 

       Mean 0.706693 0.808799 0.742698 0.966277 1.27671 1.060007 

From Table 7, it can be observed that based on MSE, OLE estimates of missing values were 

the most efficient (MSE=0.966277) for the different missing data point positions followed by 

EXP smoothing estimates (MSE=1.06007). It is also evident that the size of the set of values 

used to estimate the missing values had a positive correlation with the efficiency of the 

estimates obtained. The higher the position of missing data, the more efficient the estimates 

obtained. 

 

 

 

 

 

 

 



 

 

110 

 

Table 8: Efficiency Measures for BL (0, 0, 2, 1) with GARCH innovations 

 

MISSING                   MAD                        MSE 

POSITION OLE ANN EXP OLE ANN EXP 

48 1.203124 1.146296 1.260539 2.3505 2.264935 2.609242 

       293 1.136119 0.978307 1.110822 3.409059 1.783063 2.251697 

       496 0.964016 0.887704 1.045276 2.108792 1.778419 2.052729 

       
Total 3.303259 3.012307 3.416637 7.868351 5.826417 6.913668 

       Mean 1.101086 1.004102 1.138879 2.622784 1.942139 2.304556 

From table 8, it can be concluded that based on MSE, the ANN estimates of missing values 

were the most efficient (MSE=1.942139) for the different missing data point positions 

followed by EXP  estimates (MSE=2.304556). It is also evident that efficiency of the 

estimates improved as the position of the missing value increased.  
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Table 9: Efficiency Measures for BL (1, 0, 1, 1) with GARCH innovations 

 

MISSING                       MAD                      MSE 

POSITION OLE ANN EXP OLE ANN EXP 

48 1.136119 0.978307 1.110822 3.409059 1.783063 2.251697 

       293 0.964016 0.887704 1.045276 2.108792 1.778419 2.052729 

       496 1.276248 1.003744 1.300622 3.591108 2.326084 3.63698 

       
Total 3.376383 2.869755 3.45672 9.108959 5.887566 7.941406 

       Mean 1.125461 0.956585 1.15224 3.03632 1.962522 2.647135 

From Table 9, it can be concluded that based on MSE, the ANN estimates of missing values 

were the most efficient (MSE=1.962522) for the different missing data point positions 

followed by EXP estimates (MSE=2.647135). It is also evident that efficiency of the 

estimates had a mixed correlation as the position of the missing data increased.  

We can conclude that for bilinear time series with GARCH innovations, the ANN estimates 

were generally more efficient than the estimates obtained from the other estimators. It is 

evident that the   efficiency of the estimator used was correlated with the distribution of the 

innovations of the bilinear time series. Further, the efficiency of the OLE estimators for 

normally distribution had a positive negative correlation with the position of the missing 

data. 

For student distribution, the OLE estimators were the most efficient but not as remarkable as 

in the normal distribution. For the bilinear time series with GARCH innovations, the ANN 
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estimators were generally more efficient than the other estimators used. The estimators had a 

positive negative correlation with the position of the missing data a positive negative 

correlation with the position of the missing data. 

The figures below (Figure 11-19) show the deviations between the actual data and the 

estimated values of BL (1, 0, 1,1) for normally distributed innovations. 

Figure 11: Actual Values vs OLE Estimates for with Missing Value at 48 for BL (1, 0, 1, 

1).  

The pattern of the actual values and the estimated values are similar indicating the efficiency 

of the results. 
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Figure 12: Actual Values vs ANN Estimates for Missing Value at 48 BL (1, 0, 1, 1)   

The patterns of the two graphs are similar. There is a higher deviation between actual values 

and the actual values. 

 For 

 

Figure 13: Actual Values vs EXP Estimates for with Missing Value at 48  for BL (1, 0, 1, 

1). 
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There is higher deviation between the actual values and the estimated values as evidenced by 

higher disparity between the two graphs.. 

 

Figure 14: Actual Values vs OLE Estimates for Missing Value at 293 for BL (1, 0, 1, 1)  

There is higher deviation between the actual values and the estimate.  

 

Figure 15: Actual Values vs ANN Estimates for Missing Value at 293 for BL (1, 0, 1, 1) 

There is a significant disparity between the actual values and the estimates obtained. 
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Figure 16: Actual Values vs EXP Estimates for Missing Value at 293  for BL (1, 0, 1, 1) 

There is high disparity between the actual values and the estimated values. 

 

Figure 17: Actual Values vs OLE Estimates for Missing Value at 496 BL (1, 0, 1, 1) 

There appears to be high disparity between the observed values and the estimated values. 
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Figure 18: Actual Values Vs ANN Estimates for Missing Value at 496 for BL (1, 0, 1, 1)    

Higher deviation between the estimated values and the actual values is an indicator that the 

estimates are less efficient. 

 

Figure 19: Actual Values vs EXP Estimates for Missing Value at 496 for BL (1, 0, 1, 1)  
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The estimates have the shape of the moving average values. We can conclude that for 

bilinear time series data with normal errors, the OLE estimates gave the most efficient 

estimates of the missing values.  It is also evident that the efficiency of the estimates had a 

negative correlation worsens with the position of the missing data.  For the EXP and ANN 

the results were mixed.  In all the above cases ANN estimates had the least efficient 

estimates obtained. 
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CHAPTER FIVE 

CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

This study had five objectives; the first three was concerned with the derivation of the 

estimators; the fourth one dealt with nonparametric estimators while the last one involved the 

comparison of the efficiency of the estimates obtained. To measure the efficiency and 

accuracy of the estimates, simulation studies were conducted. One hundred samples of size 

500 each was generated using the R software and missing values were created at random at 

data positions 48, 293 and 496. The mean square error was used to determine the efficiency 

of the estimates obtained using three techniques: optimal estimates, artificial neural networks 

and exponential smoothing.  

For pure bilinear time series model BL (0, 0, p, p), the missing value was found to be 

equivalent to the one–step-ahead forecast based on the lagged observations before the point 

of the missing value. All the observations beyond the point of missing values played no role 

in estimating the missing value. For the general bilinear time series models BL (p, 0, p, p), 

the estimate not only consisted of the forecasted value based on the previous observations but 

in a few the observations after the missing value contributed to the estimate. Weights were 

attached to these observations with data closest to the point after the missing having higher 

more weights attached. 

Since different distributions and missing positions were used, it was imperative to determine 

how these factors affected the efficiency of the estimates of missing values. The study found 
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that artificial neural networks gave more efficient estimates for GARCH distribution 

compared to the optimal linear estimates and exponential smoothing. In fact, optimal linear 

estimates were the least efficient. For normally distributed data, optimal linear estimates were 

most efficient compared to both the artificial neural network estimates and exponential 

smoothing estimates. 

As far as the relationship between the position of missing value and efficiency of the 

estimator is concerned, the study had mixed findings. The estimates based on the ANN 

generally improved when the position of the missing value was large. That is, estimates at 

position 496 were efficient than estimates at position 48 or 293.  For GARCH distribution, 

cases of non-convergence of the estimates when the position of the missing value was low 

(48) were frequent, in fact in some cases it was 45%. This meant that only data of size 55% 

was used to compute the performance measures. This also occurred for missing value points 

at 293 and 496 where we had several failed convergences. When the position of the missing 

value was closer to 500, the efficiency of the estimates improved. For normally distributed 

data, position of the missing value gave mixed results on the efficiency of the estimates. 

5.2. Recommendations 

The study recommends that for bilinear time series data with normal and student t-

innovations, OLE estimates be used in estimating missing values. For bilinear time series 

data with GARCH distribution, ANN estimates may be used. The study found that OLE 

estimates do not improve with the position of the missing data. That is the further the 

missing data point is from the first data collected, the less efficient the estimate becomes. 
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5.3 Recommendation for further research 

 More research needs to be done on whether the accuracy of an imputation method 

depends on the distribution of the data. 

 A more elaborate research should be done to compare the efficiency of several 

imputation methods such as K-NN, Kalman filter and estimating functions, genetic 

algorithms, besides the three used in this study. 

 Derivation of estimates of missing value for ARMA time series models with different 

distributions such student-t, normal and GARCH distributions should be undertaken. 

 Derivation of estimates of missing values for bilinear time series with infinite 

variance should be undertaken. 

 Application of the derived estimates to real data 
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APPENDIX  

Appendix 1: Program codes used in simulation 

# The R program BL(0,0,1,1)_Normal 

      b1<-0.2 

        e<-c() 

         e[1]<- rnorm(1) 

        x <-c() 

         x[1]<-c(e[1]) 

       set.seed(0006412) 

        for (i  in 2:1500) { 

                     e[i] = rnorm(1)                 # generate noise value 

                 x[i] = b2*x[i-1]*e[i-1]+ e[i]    #  calculate x using the model               

  } 

      t<- x[-1:-1000] 

       y<-round(t,7) 

      z<-0.1+0.8*(y-min(y))/(max(y)-min(y)) 

     n<-round(z,7) 

      summary(y) 

     

     y 

     n 
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  # The R program (BL0011_GARCH(1,1) 
           b1 <-  0.9; b2<-0.64; s<-0.03; b3<-0.135;b4<- -0.17 

         h<-c() 
             x <-c() 
              e<-c() 
             z<-c() 
              e[1]<- rnorm(1) 

            z[1]<-rnorm(1) 
            h[1]<-c(sqrt(s)) 
            x[1]<-c(z[1]*h[1]) 
            set.seed(90033134) 

            for (i  in 2:1500) { 
                          e[i] = rnorm(1)                 # generate noise value 

        z[i]=rnorm(1)#generates noise value 
          h[i]= abs(sqrt(s+b2*e[i-1]^2+b3*h[i-1]))# conditional variance is strictly positive 

                    x[i] =b4* x[i-1]+b1*x[i-1]*e[i-1]+ z[i]*h[i]    #  calculate x using the model               
     }   

                 t<- x[-1:-1000] 
              y<-round(t,7) 
                

 
Y 
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 # The R program (BL1012_studentErrors) 
      b12<-0.4; b1=0.2 

         sigma<-1 
        h<-c() 

          e<-c() 
         z<-c() 
          e[1:2]<- rt(2,7) 

         x <-c() 
          x[1:2]<-c(0,   e[1]) 

       set.seed(02848151) 
         for (i  in 3:1500) { 

                      e[i] = rt(1,7)                 # generate noise value 
                x[i] = b1*x[i-1]+b12*x[i-1]*e[i-2]+ e[i]    #  calculate x using the model               

  }   
         t<- x[-1:-1000] 

        y<-round(t,7) 
      z<-0.1+0.8*(y-min(y))/(max(y)-min(y)) 

      n<-round(z,7) 
        Y 

        

# The R program (BL1011_Normal) 
       b1<- 0.1; b2<- -0.2 

        e<-c() 
         e[1]<- rnorm(1) 

        x <-c() 
         x[1]<-c(0) 

       set.seed(01009821) 
        for (i  in 2:1500) { 

                     e[i] = rnorm(1)                 # generate noise value 
                 x[i] = b1*x[i-1]+b2*x[i-1]*e[i-1]+ e[i]    #  calculate x using the model               

  } 
       t<- x[-1:-1000] 

       y<-round(t,7) 
      z<-0.1+0.8*(y-min(y))/(max(y)-min(y)) 

     n<-round(z,7) 
y 
n 
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# The R program BL(1,0,1,1)_GARCH(1,1) 

  b1 <-  0.9; b2<-0.64; s<-0.03; b3<-0.135;b4<- -0.17 

    h<-c() 

        x <-c() 

         e<-c() 

        z<-c() 

         e[1]<- rnorm(1) 

       z[1]<-rnorm(1) 

       h[1]<-c(sqrt(s)) 

       x[1]<-

c(z[1]*h[1]) 

       set.seed(580173) 

        for (i  in 

2:1500) { 

                     e[i] = rnorm(1)                 # generate noise value 

   z[i]=rnorm(1)#generates noise value 

     h[i]= abs(sqrt(s+b2*e[i-1]^2+b3*h[i-1]))# conditional variance is strictly positive 

               x[i] =b4* x[i-1]+b1*x[i-1]*e[i-1]+ z[i]*h[i]    #  calculate x using the model               

 }   

            t<- x[-1:-

1000] 

         y<-round(t,7) 

          summary(y) 
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# The R program (BL(0,0,2,1)_Normal_Errors) 

       b21<-0.4; b1=0.2 

       h<-c() 

          e<-c() 

         z<-c() 

          e[1:2]<- rnorm(2) 

        z[1:2]<-rnorm(2) 

         x <-c() 

          x[1:2]<-c(e[1],e[1]) 

       set.seed(239) 

          for (i  in 3:1500) { 

                     e[i] = rnorm(1)                 # generate noise value 

                  x[i] =b21*x[i-2]*e[i-1]+ e[i]    #  calculate x using the model               

   }   

         t<- x[-1:-1000] 

        y<-round(t,7) 

      z<-0.1+0.8*(y-min(y))/(max(y)-min(y)) 

      n<-round(z,7) 

     Y 
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# The R program (BL1011_Normal) 

        b1<- 0.1; b2<- -0.2 

        e<-c() 

          e[1]<- rnorm(1) 

         x <-c() 

          x[1]<-c(e[1]) 

        set.seed(01009821) 

         for (i  in 2:1500) { 

                      e[i] = rnorm(1)                 # generate noise value 

                  x[i] = b1*x[i-1]+b2*x[i-1]*e[i-1]+ e[i]    #  calculate x using the model               

  } 

        t<- x[-1:-1000] 

        y<-round(t,7) 

       z<-0.1+0.8*(y-min(y))/(max(y)-min(y)) 

      n<-round(z,7) 

       summary(y) 
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# The R program (BL0011_student) 

     b11<-0.4    

     e<-c()    

    z<-c()    

     e[1:2]<- rt(2,7)    

     x <-c()    

     x[1:2]<-c( e[1], x[1]*e[1]+e[2])    

  set.seed(01018848)    

      for (i  in 3:1500) {    

                  e[i] = rt(1,7)                 # generate noise 

value    

                  x[i] =b11*x[i-1]*e[i-1]+ e[i]    #  

calculate x using the odel                  

    }      

    t<- x[-1:-1000]    

   y<-round(t,7)    

   z<-0.1+0.8*(y-min(y))/(max(y)-min(y))    

    n<-round(z,7)    

    y    
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# The R program General_BL(1,0,1,2)_student) 

    b12<-0.3; b1=0.2; b11<-0.1 

    e<-c() 

   z<-c() 

    e[1:2]<- rt(2,27) 

    x <-c() 

    x[1:2]<-c(0,   e[1]) 

  set.seed(007188) 

     for (i  in 3:1500) { 

                 e[i] = rt(1,27)                 # generate noise value 

                 x[i] =b11* x[i-1]*e[i-1]+b12*x[i-1]*e[i-2]+ e[i]    #  calculate x using the 

model               

   }   

   t<- x[-1:-1000] 

   y<-round(t,7) 

  z<-0.1+0.8*(y-min(y))/(max(y)-min(y)) 

   n<-round(z,7) 

   y 

   n 
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# The R program (BL0021_GARCH_Errors) 

     b2<-0.6; b1=0.7 ; b3=0.2;c4<-0.5;c5<-0.6;c3<-0.3;s<-0.9 

   h<-c() 

          e<-c() 

         z<-c() 

          e[1:2]<- rnorm(2) 

       z[1:2]<-rnorm(2) 

       h[1]<-c(sqrt(s)) 

       h[2]<-c(sqrt(1+b3*e[1]^2+c3*h[1])) 

       x <-c() 

          x[1:2]<-c(0,   e[1]) 

        set.seed(6032609) 

          for (i  in 3:1500) { 

                      e[i] = rnorm(1)                 # generate noise value 

    z[i]=rnorm(1)#generates noise value 

      h[i]= (sqrt(s+b3*e[i-1]^2+c3*h[i-1]))# conditional variance is strictly positive 

                x[i] = b2*x[i-2]*e[i-1]+ z[i]*h[i]    #  calculate x using the model               

  }   

         t<- x[-1:-1000] 

        y<-round(t,7) 

        z<-0.1+0.8*(y-min(y))/(max(y)-min(y)) 

      v<-round(z,7) 

      Y 
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# The R program (BL(0,0,1,1)_Normal) 

      b1<-0.2 

        e<-c() 

         e[1]<- rnorm(1) 

        x <-c() 

         x[1]<-c(e[1]) 

       set.seed(0006412) 

        for (i  in 2:1500) { 

                     e[i] = rnorm(1)                 # generate noise value 

                 x[i] = b2*x[i-1]*e[i-1]+ e[i]    #  calculate x using the 

model               

  } 

      t<- x[-1:-1000] 

       y<-round(t,7) 

      z<-0.1+0.8*(y-min(y))/(max(y)-

min(y)) 

     n<-round(z,7) 

      summary(y) 

     

 y 

n 
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  # The R program (BL0011_GARCH(1,1) 
           b1 <-  0.9; b2<-0.64; s<-0.03; b3<-0.135;b4<- -0.17 

         h<-c() 
             x <-c() 
              e<-c() 
             z<-c() 
              e[1]<- rnorm(1) 

            z[1]<-rnorm(1) 
            h[1]<-c(sqrt(s)) 
            x[1]<-c(z[1]*h[1]) 
            set.seed(90033134) 

            for (i  in 2:1500) { 
                          e[i] = rnorm(1)                 # generate noise value 

        z[i]=rnorm(1)#generates noise value 
          h[i]= abs(sqrt(s+b2*e[i-1]^2+b3*h[i-1]))# conditional variance is strictly positive 

                    x[i] =b4* x[i-1]+b1*x[i-1]*e[i-1]+ z[i]*h[i]    #  calculate x using the model               
     }   

                 t<- x[-1:-1000] 
              y<-round(t,7) 
                

 
Y 

            

 

# The R program (BL1012_studentErrors) 

   b12<-0.4; b1=0.2 

   sigma<-1 

  h<-c() 

   e<-c() 

  z<-c() 

   e[1:2]<- rt(2,7) 

   x <-c() 

   x[1:2]<-c(0,   e[1]) 
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  set.seed(02848151) 

    for (i  in 3:1500) { 

                e[i] = rt(1,7)                 # generate noise value 

              x[i] = b1*x[i-1]+b12*x[i-1]*e[i-2]+ e[i]    #  calculate x using the 

model               

  }   

  t<- x[-1:-1000] 

  y<-round(t,7) 

z<-0.1+0.8*(y-min(y))/(max(y)-min(y)) 

  n<-round(z,7) 

  Y 

 

# The R program (BL1011_Normal) 
       b1<- 0.1; b2<- -0.2 

        e<-c() 
         e[1]<- rnorm(1) 

        x <-c() 
         x[1]<-c(0) 

       set.seed(01009821) 
        for (i  in 2:1500) { 

                     e[i] = rnorm(1)                 # generate noise value 
                 x[i] = b1*x[i-1]+b2*x[i-1]*e[i-1]+ e[i]    #  calculate x using the model               

  } 
       t<- x[-1:-1000] 

       y<-round(t,7) 
      z<-0.1+0.8*(y-min(y))/(max(y)-min(y)) 

     n<-round(z,7) 
y 
n 
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# The R program (BL(1,0,1,1)_GARCH(1,1)     

  b1 <-  0.9; b2<-0.64; s<-0.03; b3<-0.135;b4<- -0.17 

    h<-c() 

        x <-c() 

         e<-c() 

        z<-c() 

         e[1]<- rnorm(1) 

       z[1]<-rnorm(1) 

       h[1]<-c(sqrt(s)) 

       x[1]<-

c(z[1]*h[1]) 

       set.seed(580173) 

        for (i  in 

2:1500) { 

                     e[i] = rnorm(1)                 # generate noise value 

   z[i]=rnorm(1)#generates noise value 

     h[i]= abs(sqrt(s+b2*e[i-1]^2+b3*h[i-1]))# conditional variance is strictly positive 

               x[i] =b4* x[i-1]+b1*x[i-1]*e[i-1]+ z[i]*h[i]    #  calculate x using the model               

 }   

            t<- x[-1:-

1000] 

         y<-round(t,7) 

          summary(y) 
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# The R program (BL0021_Normal_Errors) 

       b21<-0.4; b1=0.2 

       h<-c() 

          e<-c() 

         z<-c() 

          e[1:2]<- rnorm(2) 

        z[1:2]<-rnorm(2) 

         x <-c() 

          x[1:2]<-c(e[1],e[1]) 

       set.seed(239) 

          for (i  in 3:1500) { 

                    e[i] = rnorm(1)                 # generate noise value 

                  x[i] =b21*x[i-2]*e[i-1]+ e[i]    #  calculate x using the 

model               

   }   

         t<- x[-1:-1000] 

        y<-round(t,7) 

      z<-0.1+0.8*(y-min(y))/(max(y)-min(y)) 

      n<-round(z,7) 

     Y 

       # The R program (BL(1,0,1,1)_Normal) 

        b1<- 0.1; b2<- -0.2 

        e<-c() 
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   e[1]<- rnorm(1) 

         x <-c() 

          x[1]<-c(e[1]) 

        set.seed(01009821) 

         for (i  in 2:1500) { 

                      e[i] = rnorm(1)                 # generate noise value 

                  x[i] = b1*x[i-1]+b2*x[i-1]*e[i-1]+ e[i]    #  calculate x using the  

model               

  } 

        t<- x[-1:-1000] 

        y<-round(t,7) 

       z<-0.1+0.8*(y-min(y))/(max(y)-

min(y)) 

      n<-round(z,7) 

       summary(y) 

      # The R program (BL0011_student)    

     b11<-0.4    

     e<-c()    

    z<-c()    

     e[1:2]<- rt(2,7)    

     x <-c()    

     x[1:2]<-c( e[1], x[1]*e[1]+e[2])    
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  set.seed(01018848)    

      for (i  in 3:1500) {    

                  e[i] = rt(1,7)                 # generate 

noise value    

                  x[i] =b11*x[i-1]*e[i-1]+ e[i]    #  

calculate x using the odel                  

    }      

    t<- x[-1:-1000]    

   y<-round(t,7)    

   z<-0.1+0.8*(y-min(y))/(max(y)-min(y))    

    n<-round(z,7) 

y    

# The R program General_BL(1,01,2)_student) 

    b12<-0.3; b1=0.2; b11<-0.1 

    e<-c() 

   z<-c() 

    e[1:2]<- rt(2,27) 

    x <-c() 

    x[1:2]<-c(0,   e[1]) 

  set.seed(007188) 

     for (i  in 3:1500) { 

                 e[i] = rt(1,27)                 # generate noise value 
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                 x[i] =b11* x[i-1]*e[i-1]+b12*x[i-1]*e[i-2]+ e[i]    #  calculate x using the 

model               

   }   

   t<- x[-1:-1000] 

   y<-round(t,7) 

  z<-0.1+0.8*(y-min(y))/(max(y)-min(y)) 

   n<-round(z,7) 

   Y 

   N 

 # The R program (BL(0,0,2,1)_GARCH_Errors) 

     b2<-0.6; b1=0.7 ; b3=0.2;c4<-0.5;c5<-0.6;c3<-0.3;s<-0.9 

   h<-c() 

          e<-c() 

         z<-c() 

          e[1:2]<- rnorm(2) 

       z[1:2]<-rnorm(2) 

       h[1]<-c(sqrt(s)) 

       h[2]<-c(sqrt(1+b3*e[1]^2+c3*h[1])) 

       x <-c() 

          x[1:2]<-c(0,   e[1]) 

        set.seed(6032609) 

          for (i  in 3:1500) { 
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                e[i] = rnorm(1)                 # generate noise value 

    z[i]=rnorm(1)#generates noise value 

      h[i]= (sqrt(s+b3*e[i-1]^2+c3*h[i-1]))# conditional variance is strictly positive 

                x[i] = b2*x[i-2]*e[i-1]+ z[i]*h[i]    #  calculate x using the model               

  }   

         t<- x[-1:-1000] 

        y<-round(t,7) 

        z<-0.1+0.8*(y-min(y))/(max(y)-min(y)) 

      v<-round(z,7) 

      Y 
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Appendix II: Moments of distributions used 

Moments of the standard normal distribution 
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Moments of the GARCHDistribution
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Moments of the student distribution. 
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Appendix III: Optimal Linear Estimation Method 

According to Nassiuma (1994), suppose we have one value mx missing out of a set of an 

arbitrarily large number of n possible   observations generated from a time series 

process }{ tx .  Let the subspace 

mS  be the allowable space of estimators of mx   based on the 

observed values },...,,{ 121, xxxx ttt   i.e., 

mS =sp mtnxt  ,1:   where n, the sample size, is 

assumed large. The projection of  mx  onto 

mS   (denoted m

m

x

S
P  ) such that the dispersion error of 

the estimate (written disp m

m

x

Sm Px ( ) is a minimum would simply be a minimum dispersion 

linear interpolator.  Direct computation of the projection mx onto 

mS  is complicated since the 

subspaces 1S =sp ,..., 21  mm xx and 

mS  are not independent of each other.  We thus consider 

evaluating the projection onto two disjoint subspaces of 

mS . To achieve this, we express 

mS  

as a direct sum of the subspaces 1S  and another subspace, say x , such that 

  SSSm 1 . A 

possible subspace is  1:ˆ  mixxspS ii , where ix̂   is based on the values ,..., 21  mm xx .  

The existence of the subspaces 1S and S  is shown in the following lemma (Nassiuma, 1994) 

Lemma 

Suppose }{ tx  is a nondeterministic stationary process defined on the probability 

space ),,( PB  . Then the subspaces 1S and S   defined in the norm of the  2L   are such that 



  SSSm 1 . 

Proof: 
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Suppose 

 mSx , then 
x   can be represented as 

)ˆ()ˆ(
111

ii

n

mi

ii

n

mi

ii

n

mi

i xxaxaZxaZx  


  

where 1SZ  . Clearly the two components on the right hand side of the equality are disjoint 

and independent and hence the result. The optimal linear estimator of mx  can be evaluated as 

the projection onto the subspaces 1S and S   such that disp m

m

x

Sm Px ( ) is minimized. i.e., 

mmmm

m

x

Sm

x

S

x

S

x

Sm PxPPPx


  ˆ
1

.  

But mx

S
P



=













mx

Smkk

n

mk

k Pxdispxxa (:ˆ(
1

  where the coefficients’ are estimated such 

that the dispersion error is minimized. The resulting error of the estimate   is evaluated as  

)ˆ()ˆ(
1

kk

n

mk

kmmmm xxaxxxx  


  

Now squaring both sides and taking expectations, we obtain the dispersion error as 

 1)ˆ()ˆ()(

2

1

2









 




kk

n

mk

kmmmmm xxaxxExxEdispx  

By minimizing the dispersion with respect to the coefficients (differentiating with respect to 

ka  and solving for ka ) we should obtain the coefficients 1,  mkforak , which are used 

in estimating the missing value (Nassiuma,1994).  The missing value  mx  is estimated as  
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Appendix IV: Research Methodology 

3.1 Methodology 

The methodology used in this study s described below. It includes the derivation approaches, 

data generation method, choice of performance criteria. 

3.2 Optimal linear interpolation method 

In this study, the estimators of the missing values for bilinear time series models were 

derived using optimal linear interpolation method by minimizing the dispersion error. The 

estimates were derived for pure bilinear time series and general bilinear time series having 

different probability distributions. 

3.2.1 Data generalization 

Data was obtained through simulation using computer codes written in R software. These   

codes are presented in the appendix. 

3.2.2 Missing data positions and softwares 

Three data points 48, 293 and 496 selected at random and data at these positions removed to 

create a ‘missing value(s)’ at these points to be estimated. Data analysis was done using 

statistical and computer software which included Microsoft Excel, Time Series Modeling 

TSM and R and Matlab . R was used to generate the data, matlab  was used in determining 

estimates based on artificial neural networks  while Microsoft Excel was used in analysis of  

data to calculate the MAD and MSE as well as in obtaining estimates based on exponential 

smoothing. 
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3.2.3 Choosing a quality fit criterion 

An important methodological issue that required careful attention is the selection of a 

measure of “goodness of fit” between the models and the data (time series), and of a criteria 

to judge when this measure is “good enough” for the stated purpose. The mean square error 

(MSE) and mean absolute deviation (MAD) were used as performance measures. 

3.3 Methodology for ANN 

Recent studies indicate that consideration of statistical principles in the ANN model building 

process may improve model performance ( Cheng and Titterington, 1994; Ripley, 1994; 

Sarle, 1994). Consequently, a systematic approach in the development of ANN models was 

adopted. The steps that were followed included: data pre-processing, the determination of 

adequate model inputs and suitable network architecture, parameter estimation (optimization) 

and model validation (Maier and Dandy, 1999b). In addition, careful selection of a number of 

internal model parameters required was undertaken. 

 

3.3.1 Structure of the artificial neural network 

For this analysis a basic multilayer perceptron (MLP) with a single hidden layer will be used, 

which is the most commonly employed form of ANN (see Zhang, 1998).To date, there is no 

simple clear-cut method for determination of input parameters and the procedure adopted 

was to test numerous networks with varying numbers of input and hidden units p and q, 

respectively.  
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3.3.2 Data pre-processing 

The available data was divided into their respective subsets (e.g. training, testing and 

validation) before any data pre-processing is carried out (Burden et al., 1997).  

This was in the ratio of 70% training, 15% validation and 15% testing. In order to ensure that 

all variables receive equal attention during the training process, data was standardized. The 

standardization was in the range 0.1–0.9.  This achieved using the formula 

)(

)(
8.01.0

minmax

min

xx

xx
z t

t



  

where tz - standardized form, tx -original data, maxx - maximum value in the sample, minx -

minimum value in the sample. For computation of performance measures, the estimates 

obtained from the artificial neural work were converted back to the original form usingthe 

formula 

minminmax ))(1.0(25.1 xxxzx tt   

3.3.3 Training 

The data presented to the neural networks, tz , was scaled between [0.1, 0.9].  The numbers 

of hidden units were re-specified for every time series. Gradient descent back-propagation 

was used for the training. The learning rate was set to 0.5 with a cooling factor per epoch of 

0.01. Momentum was set to 0.4 and the networks are trained for 1000 epochs or until an early 

stopping criterion was satisfied. For the early stopping criterion the mean squared error was 

evaluated in every epoch. Once a network structure (p,q) was specified, the network was  
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ready for training, a process of parameter estimation such that mean squared error of the test 

data is minimized.  

The momentum term may also be helpful to prevent the learning process from being trapped 

into poor local minima, and is usually chosen in the interval [0, 1].  

Finally, the estimated model was evaluated using a separate hold-out sample that is not 

exposed to the training process. 

In order to obtain the optimum network architecture, based on the concepts of artificial 

neural networks design and using pruning algorithms in MATLAB 7 package software, 

different network architectures were evaluated and used to compare the ANNs performance. 

The best-fitted network was selected, and used to estimate the missing values. 

The test and train procedure involves training the network on most of the input data (around 

70%) and testing on the remaining data. The network performance on the test set is a good 

indicator of its ability to generalize and handle data it has not been trained on. If the 

performance on the test was poor, the network configuration or learning parameters was 

changed. The network was then retrained until its performance was satisfactory.  

 3.3.4 Data and performance measures 

The data series were simulated from different elementary and simple bilinear models which 

have normal, student and GARCH distributions using R-statistical software.  A program 

codes in R were developed to assist in the simulation.  
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The seed in the R program code was changed to obtain a new sample. For each program 

code, a set of 100 samples will be generated and analyzed. Each sample was of size 500 and 

missing artificial points were created at data point 48, 293 and 496 (these points were 

selected at random).The models selected included 

Normal    Student  GARCH 

BL_(0,0,1,1)    BL_(0,0,1,1)   BL_(0,0,1,1) 

BL_(1,0,1,1)   Bl _ (1,0,1,2)  BL_(1,0,1,1)   

BL_(1,0,2,1)   BL_(0,0,2,1)  BL_(0,0,2,1)  

 3.4 Performance measures 

The MAD (Mean Absolute Deviation) and MSE (Mean Squared Error) were used. These 

were obtained from equation (3) and equation (4) respectively. 

3.5 Methodology for exponential smoothing 

A simple exponential smoothing was used to estimate the missing values. For each sample 

data, the constant alpha was selected from a range of values between 0.1 and 0.9 in steps of 

0.1. Based on the data values before the missing point, recursive estimates were obtained. 

The alpha that gave the least MAD was selected and used in forecasting the missing value. 

This was done with the aid of excel software. 

3.5 Estimation of missing values using optimal estimation functions. 

Let  nxxx ,...,, 21  be an observed time series with mx  (1<m<n) missing.  Then when 

considering mx  as a parameter we can obtain its optimal estimate as in (Thavaneswaran and 
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Abraham, 1988).  It can be shown that the optimal estimate of  mx  is obtained by solving for 

mx   in the equation 0
1

0

1 


 t

n

t

t ha , where th  is a sequence of innovations of the form, such 

that, 

E ( th / 
1tF ) =0 

and  
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1

2

1

0

1 x

tt

x

tt
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3.61 Exponential smoothing 

There are two types of exponential smoothing that can be used namely: Simple Exponential 

Smoothing (Exponentially weighted moving average) and Brown's Linear (i.e., double) 

Exponential Smoothing 

3.6.11 Simple exponential smoothing (exponentially weighted moving average) 

Let α denote a "smoothing constant" (a number between 0 and 1).  One way to write the 

model is to define a series L that represents the current level (i.e., local mean value) of the 

series as estimated from data up to the present.   The value of L at time t is computed 

recursively from its own previous value like this: 

Lt  =  αYt  +  (1α)  Lt-1 
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Thus, the current smoothed value is an interpolation between the previous smoothed value 

and the current observation, where α controls the closeness of the interpolated value to the 

most recent observation. The forecast for the next period is simply the current smoothed 

value: 

tt LY 1
ˆ  

 Equivalently, we can express the next forecast directly in terms of previous forecasts and 

previous observations, in any of the following equivalent versions.  In the first version, the 

forecast is an interpolation between previous forecast and previous observation. 

ttt YYY ˆ)1(ˆˆ
1  

 

In the second version, the next forecast is obtained by adjusting the previous forecast in the 

direction of the previous error by a fractional amount α: 

ttt eYY 
ˆˆ

1
 

Where, 

ttt YYe ˆ  

is the error made at time t.  In the third version, the forecast is an exponentially weighted (i.e. 

discounted) moving average with discount factor 1-α: 

....])1()1()1([ˆ
3

3

2

2

11   ttttt YYYYY   
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 The interpolation version of the forecasting formula is the simplest to use if you are 

implementing the model on a spreadsheet: it fits in a single cell and contains cell references 

pointing to the previous forecast, the previous observation, and the cell where the value of α 

is stored. 

Another important advantage of the SES model over the SMA model is that the SES model 

uses a smoothing parameter which is continuously variable, so it can easily optimized by 

using a "solver" algorithm to minimize the mean squared error.  

3.7 Brown's Linear exponential smoothing 

The SMA models and SES models assume that there is no trend of any kind in the data 

(which is usually good or at least not-too-bad for 1-step-ahead forecasts when the data is 

relatively noisy), and they can be modified to incorporate a constant linear trend as shown 

above.  What about short-term trends?  If a series displays a varying rate of growth or a 

cyclical pattern that stands out clearly against the noise and if there is a need to forecast more 

than 1 period ahead, then estimation of a local trend might also be an issue. The simple 

exponential smoothing model can be generalized to obtain a linear exponential smoothing 

(LES) model that computes local estimates of both level and trend. The simplest time-

varying trend model is Brown's linear exponential smoothing model, which uses two 

different smoothed series that are centered at different points in time.  The forecasting 

formula is based on an extrapolation of a line through the two centers.     

3.8 Exponential smoothing 

Exponential Smoothing methods are the most common methods of forecasting. Their 

popularity can be attributed to several practical considerations. First, they are very simple in 
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concept and easy to understand. Second, they require little computational effort and small 

data storage space. Third, they can achieve flexible adaptivity by varying smoothing 

parameters to account for changes in the behaviors of the time series being forecasted.  
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Appendix V: Paper Presentation in International Conference 
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Appendix VI: Paper Presentation in International Conference 
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Appendix VII : Publications 
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Appendix VIII: Pubblictions 
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Appendix: IX   Publications  
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Appendix X: Publication 
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Appendix XI Publication 
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